摘要
研究脉冲广义时滞Logistic方程N′(t) =p(t)N(t) (1 -N(t-τ) ) a,t≥ 0 ,t≠tk,N(t+k) =N(tk) 1 +6 k ,k∈n ,的全局吸引性 ,获得了方程每一解N(t)趋于 1的充分条件 。
Consider the global attractivity of generalized delay Logistic equation under im pulsive perturbations N′(t)=p(t)N(t)(1-N(t-τ)) a,t≥0,t≠t k, N(t + k)=N(t k) 1+6 k,k∈n, some sufficient conditions that guarantee every solution of the equation to tend to 1 are obtained. These results generalize and imporove some known results about delay differential equations under impulsive.
出处
《烟台大学学报(自然科学与工程版)》
CAS
2002年第1期5-9,共5页
Journal of Yantai University(Natural Science and Engineering Edition)