期刊文献+

一类食饵-捕食者模型的渐近性态 被引量:2

The Asymptotic Behavior of a Predator-Prey Model
下载PDF
导出
摘要 研究了一类带周期系数的阶段结构的食饵捕食者模型的渐近性态。利用比较原理和泛函数微分方程定理建立了种群一致持续生存的条件 ,并得到了正周期解的存在性 . The asymptotic behavior of a stage structured predator prey model with periodic coefficents is studied. The sufficient condition for the uniform persistence of the predator populations is obtained by using the comparison principle and the theory of functional differential equations. The existence of positive periodic solution is obatined.
出处 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第1期6-9,共4页 Journal of Southwest China Normal University(Natural Science Edition)
基金 国家自然科学基金资助项目 ( 199710 6 7)
关键词 一致持续生存 周期解 阶段结构 食饵-捕食者模型 渐近性态 比较原理 泛函数微分方程 persistence periodic solution stage structure population
  • 相关文献

参考文献4

  • 1马知恩.种群生态学的数学建模与研究[M].安徽教育出版社,1994..
  • 2王开发.带时滞的微生物培养模型的动力学行为分析[M].西南师范大学数学系,1997..
  • 3张勇 王稳地 等.一类食饵-捕食者模型的渐近生态[J].西南师范大学学报:自然科学版,2000,25:1-7.
  • 4滕志东,陈兰荪.周期捕食被捕食系统正周期解存在的充要条件[J].数学物理学报(A辑),1998,18(4):402-406. 被引量:9

共引文献17

同被引文献12

  • 1张少林,薛有才.一类阶段结构捕食系统的全局渐近稳定性[J].浙江科技学院学报,2005,17(2):81-83. 被引量:2
  • 2[2]XIAO YAN-NI,CHEN LAN-SUN.Global stability of a predator prey system with stage-structure for the predator[J].Acta Mathematical sinic (English series),2004(20):63 ~ 70.
  • 3[3]CUI JIN-AN,CHEN LAN-SUN,WANG WEN-DI.The effect of dispersal on population growth with stage-structure[J].Computers Math Applic,2000,39:91 ~ 102.
  • 4[5]GOPALSAMY K.Stability and Oscillation in Delay Differential Equations of Population Dynamics[M].Dordrecht/Norwell,MA:Kluwer Academic,1992.
  • 5[1]Arditi R,Ginzburg L R,Akcakaya H R.Variation in Plankton Densities Among Lakes:a Case for Ratio-Dependent Models[J].Amer Naturalists,1991,138:1287-1296.
  • 6[2]Arditi R,Ginzburg L R.Coupling in Predator-Prey Dynamics:Ratio-Depenence[J].Journal of Theoretical Biology,1989,139:311-326.
  • 7[3]Wang Lin-lin.On Qualitative Analysis of Autonomous Predator-Prey Systems with Holing Type Ⅲ Functional Response[J].西北师范大学学报(自然科学版),2005,41(1):1-6.
  • 8[4]Zhang Shuwen,Tan Dejun,Chen Lansun.Chaos in Periodically Force Holing-Ⅱ Predator System with Impulsive Perturbations[J].Chaos,Solitons and Fractals,2006,28:367-376.
  • 9[5]Laksmikantham V,Bainov D D,Simeonov P S.Theory of Impulsive Differential Equations[M].Singapore:World Scientific,1989.
  • 10[6]Liu Bing,Zhang Yujuan,Chen Lansun.The Dynamical Behaviors of a Lotka-Volterra Predator-Prey Model Concerning Integrated Pest Management[J].Nonlinear Analysis:Real World Applications,2005,6:227-243.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部