期刊文献+

一类时滞人口模型的全局吸引性

Global Attractivity for a Population Model with Delay
下载PDF
导出
摘要 给出了保证时滞人口模型N'(t)=r(t)N(t)1-N(t-τ)/1-λN (t-τ),t≥0的每一正解N(t)趋于正平衡点N*=1(t→∞)的一族充分条件,改进了相关文献中的一些结论. A sufficient condition that guarantees every solution of the population model with delay was given N′(t)=r(t)N(t)1-N(t-τ)1-λN(t-τ),t≥0, to converge to the equilibrium N *=1 as t→∞. The results in related reference are improved.
出处 《北华大学学报(自然科学版)》 CAS 2002年第1期10-12,共3页 Journal of Beihua University(Natural Science)
关键词 时滞人口模型 全局吸引性 正解 正平衡点 非线性时滞微分方程 振动解 Delay Population model Global attractivity
  • 相关文献

参考文献5

  • 1[1]Chen M. P, Ju J.S. Global Attractivity in a Nonautonomous Delay Logistic Equation[J]. Dynamic Systems and Applications,1995, (4): 355~ 362.
  • 2[2]Kuang Y. Global Stability for a Class of Nonlinear Nonautonomous Delay Equations[J]. Nonlinear Analysis, 1991, (17): 627~ 634.
  • 3[3]Kuang Y. Delay Differential Equations with Application in Population Dynamics[M]. Boston: Academic Press, 1993.
  • 4[5]Liu Yuji. Global Attractivity for a Population Model with Delay[ J ]. Journal of Biomathematics, 2000,15 ( 1 ): 65 ~ 69.
  • 5[6]Zhou Z, Zhang Q. Q. Global Attractivity of a Nonautonomous Logistic Difference Equation with Delay[J ]. Computer and Mathematics with Application, 1999,38: 57 ~ 64.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部