期刊文献+

三维多介质电容计算的有效方程组织方法 被引量:3

Efficient equation organization for 3-D multi-dielectric parasitic capacitance extraction
原文传递
导出
摘要 随着 VL SI电路集成密度急剧增长及特征尺寸不断缩小 ,快速准确地计算三维互连寄生电容已成为集成电路辅助设计中一个研究热点。提出一种有效的多介质直接边界元方程组织方法。该方法排列直接边界元方程组中的源点和变量 ,使系数矩阵非零元分布极有规律 ,通过最少的数组存储非零矩阵块 ,以达到加快方程迭代求解的目的。该方法可应用于任意复杂结构的三维寄生电容计算 ,对介质数目较多的虚拟多介质计算 。 In the VLSI (very large scale integration) circuit, with the feather size scaled down and the indensity increased, fast and accurate computation of 3 D interconnect capacitance is becoming very important to design of high performance IC (integrated circuit). An efficient approach is proposed to organize the linear equations produced by the multi dielectric direct BEM computation. The non zero elements are distributed regularly in the matrix, when the source points and variables are properly arranged. Then, the computational cost of the equation solution is markedly reduced by storing them in a few two dimensional arrays. The approach can be applied to any complex multi dielectric structure of a 3 D VLSI parasitic capacitor. The approach performs much better than existing approaches especially for the quasi multiple medium accelerating computation which has more medium blocks.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2002年第1期72-75,99,共5页 Journal of Tsinghua University(Science and Technology)
基金 国家自然科学基金资助项目 ( 6 9876 0 2 4)
关键词 寄生电容 直接边界元法 线性方程组 超大规模集成电路 电容计算 虚拟介质 parasitic capacitance direct boundary element method system of linear equations sparse matrix
  • 相关文献

参考文献5

二级参考文献36

  • 1胡庆生,林争辉.VLSI 版图的电阻参数提取[J].上海交通大学学报,1997,31(3):41-45. 被引量:1
  • 2刘建.分布式计算机系统[M].北京:人民邮电出版社,1990..
  • 3布莱比来CA.工程师用的边界单元法[M].北京:科学出版社,1986..
  • 4吴启明,计算物理,1992年,9期,285页
  • 5李忠元,电磁场边界元素法,1987年
  • 6布莱比亚C A,工程实用边界单元法,1986年
  • 7Wang Z Y,IEEE Trans Comput Aided Des,1992年,11卷,4期,497页
  • 8Hu N,Proc 4th China Japan Sympo Boundary Element Method,1991年,119页
  • 9刘建,分布式计算机系统,1990年
  • 10李忠元,电磁场边界元素法,1987年

共引文献3

同被引文献36

  • 1Kane J H. Boundary Element Analysis in Engineering Continuum Mechanics [M]. Englewood Cliffs, NJ: Prentice Hall, 1994.
  • 2侯劲松.[D].北京: 清华大学,1999.
  • 3Saad Y, Schultz M H. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems [J]. SIAM J Sci Statist Comput, 1986, 7(3): 856-869.
  • 4YU Wenjian, WANG Zeyi, GU Jiangchun. Fast capacitance extraction of actual 3-D VLSI interconnects using quasi-multiple medium accelerated BEM [J]. IEEE Trans Microwave Theory Tech, 2003, 51(1): 109-120.
  • 5Vavasis S A. Preconditioning for boundary integral equations [J]. SIAM J Matrix Anal Appl, 1992, 13(3): 905-925.
  • 6Chen K. On a class of preconditioning methods for dense linear systems from boundary element [J]. SIAM J Sci Comput, 1998, 20(2): 684-698.
  • 7Chen K. An analysis of sparse approximate inverse preconditioners for boundary integral equations [J]. SIAM J Matrix Anal Appl, 2001, 22(4): 1058-1078.
  • 8Nabors K, Kim S, White J. Fast capacitance extraction of general three-dimensional structures [J]. IEEE Trans Microwave Theory Tech, 1992, 40(7): 1496-1505.
  • 9Nachtigal N M, Reddy S, Trefethen N. How fast are nonsysmmetric matrix iterations [J]. SIAM J Matrix Anal Appl, 1992, 13(3): 778-795.
  • 10Brown A S.Fast films [J].IEEE Spectrum,2003,40(2): 3640.

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部