期刊文献+

玻璃纤维毡增强聚丙烯在压缩模塑流动过程中的纤维分布 被引量:3

Fiber Distribution During Compression Molding of Glass Mat Reinforced Polypropylene
下载PDF
导出
摘要 通过测定玻璃纤维毡增强聚丙烯经挤压流动后不同区域的纤维含量 ,研究了基体树脂、增强材料的结构与性质、坯料设计、模具温度及坯料的预热温度等对玻璃纤维毡增强聚丙烯在压缩模塑流动过程中纤维分布的影响。结果表明 ,适当提高基体的粘度及采用多层坯料叠层的坯料设计方法 ,有利于制品内纤维的均匀分布 ;针刺密度适当的连续针刺毡及由短切纤维组成的复合针刺毡与聚丙烯形成的复合材料 (GMT) ,在压缩模塑的流动过程中纤维分布的均匀性较好 ,随着针刺密度的增加 ,纤维分布的均匀性下降 ;用粘结剂粘结而成的连续原丝毡与聚丙烯复合得到的GMT材料 ,纤维分布的均匀性较差 ,经适当针刺以后 ,纤维分布的均匀性得到一定程度的改善 ;过低的模具温度及坯料预热温度 ,会引起材料充模流动能力下降 ,但模具温度及坯料预热温度过高时 ,流动前沿区域的树脂富集现象将加剧。 The effect of matrix resin,architecture and property of reinforcement,blank design,mold temperature and blank preheat temperature on the fiber distribution during compression molding of glass mat reinforced polypropylene(GMT-PP)was investigated by measuring the fiber content in various areas of GMT-PP after squeezing flow.It was found that the fiber distribution was uniform when using stacked blank design and increasing the viscosity of matrix resin.The needling operation of random continuous fiber mat was advantageous to the fiber distribution,however excessive needle punching would decrease the uniformity of fiber distribution.The fiber distribution was also better when using chopped fiber kept together in a mat by needling operation.Moreover,the fiber distribution was improved to some extent if the continuous fiber mat kept together by a binder was treated with needling.Excessive low mold temperature and blank preheat temperature leaded to the decrease in the ability of composites flowing to fill mold,whereas the resin enrichment occurred at the flow front of composites when using excessive high mold temperature and blank preheat temperature.
出处 《中国塑料》 CAS CSCD 北大核心 2001年第11期39-42,共4页 China Plastics
基金 国家 8 63计划项目 上海市教委青年科学基金资助
关键词 聚丙烯 玻璃纤维毡增强热塑性聚合物 压缩模塑流动 纤维发布 GMT glass fiber polypropylene glass fiber mat reinforced thermoplastics compression molding
  • 相关文献

参考文献1

共引文献6

同被引文献25

  • 1刘丽妍,黄故.亚麻/聚丙烯机织复合材料薄板的制备与研究[J].玻璃钢/复合材料,2005(5):17-19. 被引量:17
  • 2[1]A Trende, B T Astrom, G Nilsson. Modelling of residual stresses in compression moulded glass-mat reinforced thermoplastics[J]. Composites Part A,2000,31:1241-1254.
  • 3[2]David H Allen, J Anders Holmberg, Mats Ericson etc. Modeling the viscoelastic response of GMT structural components[J]. Composites Science and Technology,2001,61:503-505.
  • 4[3]M D Wakeman, C D Rudd, T A Cain, R Brooks, A C Long. Compression moulding of glass and polypropylene composites for optimized macro- and micro-mechanical properties 4:Technology demonstrator-a door cassette structure[J]. Composites Science and Technology,2000,60: 1901-1918.
  • 5[4]A G Gibson, S Toll. Mechanics of the squeeze flow of planar fibre suspensions[J]. Journal of Non-Newtonian Fluid Mechanics,1999,82:1-24.
  • 6[5]G Kotsikos, J H Bland and A G Gibson. Squeeze flow testing of glass mat thermoplastic material[J]. Composites Part A,1996:1195-1200.
  • 7Jarvela P, Stenlund B, Wilen C-E, et al. Journal of Applied Polymer Science, 2002, 84(6): 1 203-1 213.
  • 8Lin Jeng-Shyong. Polymers and polymer Composites, 2002,10(8): 607-617.
  • 9Tjong Sie Chin, Xu Shi-Ai, Li Robert, et al. Composites Science and Technology, 2002, 62(6) : 831-840.
  • 10Fu Shao-Yun, Mai Yiu-wing, Lauke Bemd, et al. Journal of Materials Science, 2002, 37(14): 3 067-3 074.

引证文献3

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部