期刊文献+

微分代数在高阶复合几何像差-色像差分析中的应用 被引量:1

Differential Algebra Analysis for High Order Combined Geometric-chromatic Aberrations
下载PDF
导出
摘要 微分代数是计算机数值计算领域中的一种强有力的新型数学方法 ,它为任意高阶微分的计算提供了一种可达到机器精度的极为简便的手段。本文根据微分代数的基本原理 ,研究了它在高阶复合几何像差 色像差分析计算中的应用 ,得到了系统的任意阶传递性质的微分代数表示 ,并具体给出了一至三阶复合几何像差 色像差所对应的微分代数系数。文中还以一个轴上电位分布具有解析表达式的静电电子透镜为例 ,计算了它的一至三阶复合几何像差 色像差系数 ,并给出了一阶色差分布图形。 High order combined geometric chromatic aberrations were calculated with Differential Algebra,a method which is capable of directly evaluating arbitrarily high order derivatives with accuracy up to the upper limit of the computer to be used.Arbitrary order transfer properties of the system can be expressed in term of Differential Algebra.The corresponding differential algebraic coefficients of the 1st to the 3rd order combined geometric chromatic aberrations were given.Specific demonstration of this new technique was shown in the calculation of an electrostatic electron lens,whose axial potential density can be analytically described.
出处 《真空科学与技术》 EI CAS CSCD 北大核心 2001年第5期356-359,共4页 Vacuum Science and Technology
基金 国家自然科学基金资助项目 (No .699710 19)
关键词 微分代数 几何像差-色像差 静电电子透镜 带电粒子光学 半导体器件 Differential algebra,Geometric chromatic aberration,Electrostatic electron lens
  • 相关文献

参考文献11

  • 1Borsch H. Experimentelle Bestimmung der Energieverteilung in Thermisch Ausgeloesten Elektronenstrallen. Zeitschr Phys,1954,139:115~ 146
  • 2Glnser W. Grundlagen der Elektronenoptik. Wien: Springer, 1952
  • 3Sturrock P A. Static and Dynamic Electron Optics. Cambridge University Press, 1955
  • 4谢曼0И.电子光学理论基础.北京:高等教育出版社,1958
  • 5Piles E,Typke D. Dreidimensional Abbildene Elektronen-mikro skope. Z Naturforsch A, 1978,33:1361 ~ 1377
  • 6Cheng Min,Tang Tiantong, Yao Zhenhua et al. Study on Differential Algebraic Method of Aberrations upto Arbitrary Order for Combined Electromagnetic Focusing Systems. Chinese Journal of Electronics,2001,3:305 ~ 308
  • 7Robinson A. Nonstandard analysis. Proceedings of the Royal Academy of Sciences Ser A64[C]B, 1961,64:432~ 440
  • 8Iri M. History of Automatic Differentiation and Rounding Error Estimation. In: Griewiank A,Corliss G Feds. Automatic Differentiation of Algorithms: Theory, Implementation and Application,The first SIAM Workshop on Automatic Differentiation, Breckenridge, Colorado: SIAM, 1991: 3 ~ 16
  • 9Berz M. Differential Algebraic Description of Beam Dynamics to Very High Orders. Particle Accelerators, 1989,24:109~ 124
  • 10Hawkes P W, Kasper E. Principles of Electron Optics. Volume 2, Academic Press, 1989

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部