期刊文献+

GA易≠GA能快速寻优 被引量:1

Being GA-Easy≠Being Speedily Solvable by GAs
下载PDF
导出
摘要 该文通过对一类问题的计算指出有的问题即使是GA-易的,采用遗传算法也不能保证快速找到最优点。GA-欺骗性分析和Walsh分析等方法不能解释这种现象。该文提出基因座影响系数和含最优串模式的基数两个概念,对这类现象做了初步分析,指出其主要原因在于GA对这类问题的局部寻优能力比较弱。 In this paper,the calculation of an optimization problem shows that being GA-easy does not mean being speedily solvable by Genetic Algorithms.These facts are beyond what the GA-deception analysis and Walsh analysis can explain.In order to give an explanation to these facts,two concepts,Locus Influencing Factors and Best -Schematic Cardinal Numbers,are proposed,based on which tentative analyses are made.Conclusion is drawn in the end,which points out that Genetic Algorithms are inefficient in local search to this kind of optimization problems.
出处 《计算机工程与应用》 CSCD 北大核心 2002年第3期80-82,178,共4页 Computer Engineering and Applications
基金 国家自然科学基金资助项目(编号:69864001)
关键词 遗传算法 局部搜索 基因座影响系数 寻优 Genetic Algorithms ,Local search,Locus Influencing Factors,Best-Schematic cardinal numbers,GA-hard
  • 相关文献

参考文献2

  • 1刘勇.非数值并行计算方法-遗传算法[M].科学出版社,1993..
  • 2董延恺.基础集合论[M].北京:北京师范大学出版社,1988..

同被引文献10

  • 1Sheng W,Swift S,Zhang L,et al.A weighted sum validity function for clustering with a hybrid niching genetic algorithm[J].IEEE Trans Systems,Man and Cybernetics:Part B,2005(99):1156-1167.
  • 2Lee C Y.Entropy-Boltzmann selection in the genetic algorithms[J].IEEE Trans Systems,Man and Cybernetics:Part B,2003,33 (1):138-149.
  • 3Srinivas M,Patnaik L M.Adaptive probabilities of crossover and mutation in genetic algorithms[J].IEEE Trans Systems,Man and Cybernetics,1994,24 (4):656-667.
  • 4Beveridge J R,Balasubramaniam K,Whitley D.Matching horizon features using a messy genetic algorithm[J].Computer Methods in Applied Mechanics and Engineering,2000,186(2):499-516.
  • 5Renders J M,Flasse S P.Hybrid methods using genetic algorithms for global optimization[J].IEEE Trans Systems,Man and Cybernetics,1996,26(2):243-258.
  • 6Kuo T,Hwang S Y.Why DGAs work well on GA-hard functions?[J].New Generation Computing,1996,14(4):459-479.
  • 7Wilson S W.GA-easy does not imply steepest-ascent optimizable[C]//Proceedings of the Fourth International Conference on Genetic Algorithms and Their Applications.San Mateo,CA:Morgan Kaufmann,1991:85-89.
  • 8Kuo T,Hwang S Y.Genetic algorithm with disruptive selection[J].IEEE Trans Systems,Man and Cybernetics:Part B,1996,26(2):299-307.
  • 9Goldberg D E.Genetic algorithms in search,optimization and machine learning[M].Reading,MA:Addison Wesley,1989.
  • 10刘勇.非数值并行计算方法一遗传算法[M].北京:科学出版社,1993.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部