期刊文献+

广义相对论在实时空中的引力量子化的新进展 被引量:3

New Progression about Gravity Quantization in General Relativity Theory in Real Space-time
下载PDF
导出
摘要 在瑞士洛桑世界实验室和意大利Bologna和Ferrara大学物理系工作的意大利国际著名物理学家VenzodeSabbata教授关于广义相对论在实时空中的引力量子化进行了一系列举世瞩目的开创性研究。笔者将着重介绍这方面的一些工作 ,主要包括 :1.在Einstein -Cartan理论意义下实时空中量子化广义相对论 ,即广义相对论加挠率 ,从物理学的观点来看 ,这意味着引力论中引入自旋 ;2 .创建了一种研究引力量子化的简洁数学工具 ,实时空的几何代数———多重向量代数 。 Professor Venzo de Sabbata,working at World Laboratory,Lausanne,Switzerland,and Department of Physics,University of Bologna and Ferrara,Italy,is a famous Italy Physicist in the world.He is engaged with a series of creating research works about gravity quantization of General Relativity Theory in the real space-time which attract the attentions of the world.This paper pays the attention to introduce the works of this field,containing mainly:1.quantizing the general relativity theory in the sense of Einstem-Cartan theory,i.e., general relativity adds the torsion,which means introducing spin into the theory of gravity.2. building a compact mathematical tool for research of gravity quantization,the geometric algebra in the real space-time--multivector algebra,i.e.,developing a spinor manifold in the real space-time.
作者 段绍光
出处 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2002年第1期109-112,共4页 Journal of Chongqing University
关键词 广义相对论 实时空 引力 量子化 几何代数 多重向量 旋量流形 general relativity theory real space-time gravity quantization geometric algebra multivector tensor spinor
  • 相关文献

参考文献5

  • 1[1]DATTA BK,SABBATA V.D.and RONCHETTI L,Quantization of gravity in real space-time[J].Nuovo Cimento 1998,113B(6):711-732.
  • 2[2]SABBATA VD,RONCHETTI L A Hamiltonian Formulation of Gravitational Theory that Allows One to Consider Curvature and Torsion as Conjugate Variables[J].Foundation of Physics 1999,29(7):1 099-1 117.
  • 3[3]SABBATA VD.Quantum Gravity [J].Nuovo Cimento A,1996,107(3):80-93.
  • 4[4]BORZESZKOWSKI HHV,TREDER HJ.Spin in Gravity,in Quantum Gravity (C),1996,32-42.
  • 5[5]HESTENES D.Clifford Algebra to Geometric Calculus (M).Reidel,Dordrecht;The Netherlands,1982.

同被引文献24

  • 1李子军.再论牛顿力学形式和相对论力学的协变性[J].大学物理,2004,23(11):28-29. 被引量:2
  • 2张元仲.从牛顿力学到狭义相对论[J].力学与实践,2005,27(4):1-6. 被引量:17
  • 3(美)杰勒密·伯恩斯坦著 任东升译.爱因斯坦与物理学的边疆[M].天津:百花文艺出版社,2001.200.
  • 4[5]SABBATA VD, Quantum Gravity [J]. Nuovo Cimento A, 1996,107(3): 80-93.
  • 5[6]BORZESZKOWSKI H H V, TREDER H J. Spin in Gravity[A]. in Quantum Gravity [C]. World Scientific,Singapore:[s.n.],1996. 32-42.
  • 6[7]HESTENES D. Clifford Algebra to Geometric Calculus[M]. Reidel, Dordrecht, the Netherlands:[s.n.], 1982.
  • 7[3]DATTA B K, SABBATA V D, RONCHETTI L. Quantization of gravity in real space-time [J]. Nuovo Cimento 1998, 113B(6): 711-732.
  • 8[4]SABBATA V D, RONCHETTI L. A Hamiltonian Formulation of Gravitational Theory that Allows One to Consider Curvature and Torsion as Conjugate Variables [J]. Foundation of Physics. 1999,29(7): 1 099-1 117.
  • 9SABBATA V. Gravitational Measurements. Foundamental( Metrology and Constants[ M]. SABBATA V. and MELNIKOV V. N., eds. (Kluwer Academic, Dordrecht)1980,NATO ASI Series,230,115.
  • 10SABBATA V. Is it dark matter necessary to explain galaxy ratation curves? [ A]. Proceedings of the first International Symposium on Cosmic Rays Physics in Tibet (ISCRP - I)[ C ]. Lhasa, China, 1994,472 - 478.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部