摘要
用多项式组主项解耦消元法 ,将几何定理的假设条件 (多项式组PS)化为主系数不含变元的三角型多项式组DTS ,可得到定理命题成立的不含变元的非退化条件 ,即充分必要或更接近充分必要的非退化条件 由于多项式主系数不含变元 ,已不存在DTS多项式之间的约化问题 ,故方法有普遍意义
Using the elimination method with decoupling of leadin g terms for a polynomial set presented by the author, a polynomial set of an or iginal geometry statement of a geometry theorem can be translated into an ascend i ng polynomial set with leading coefficients without unknown variables. The nonde generate conditions without unknown variables for the original geometry statemen t can be obtained and are necessary and sufficient or nearly necessary and suff icient. Since these leading coefficients have no unknown variables, the ascendin g polynomial set is always irreducible. Therefore, the method in this paper has universal significance.
出处
《江苏理工大学学报(自然科学版)》
2002年第1期44-48,共5页
Journal of Jiangsu University of Science and Technology(Natural Science)
基金
国家自然科学基金资助项目 (5 9875 0 84)
关键词
主项解耦消元法
多项式组
几何定理
机器证明
elimination method
decoupling of leading term s
geometry theorem
mechanical proving