期刊文献+

适用于一类非线性振子的修正MICKENS方法 被引量:4

A Modified Mickens Procedure for Certain Nonlinear Oscillators
下载PDF
导出
摘要 研究具有奇非线性单自由度保守系统的非线性振动 .通过改进Mickens的迭代法建立频率的两个解析逼近公式 。 This paper deals with nonlinear oscillations of conservative single degree of freedom systems with odd nonlinearity. A modified Mickens' iteration procedure is proposed to establish two analytical approximate formulas for the frequency. The two formulas are valid for small as well as large amplitude of oscillation.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2002年第1期27-30,共4页 Journal of Jilin University:Science Edition
基金 国家自然科学基金 (批准号 :19972 0 2 3 ) 教育部优秀青年教师基金 教育部高等学校骨干教师基金
关键词 非线性振动 振动频率 Mickens迭代方法 奇非线性单自由度保守系统 解析逼近公式 周期解 conservative system nonlinear oscillation frequency Mickens iteration procedure
  • 相关文献

参考文献5

  • 1Nayfeh A H.Introduction to Perturbation Techniques[M].New York:Wiley,1993.
  • 2Mickens R E.Oscillations in Planar Dynamic Systems[M].Singapore:World Scientific,1996.
  • 3Mickens R E.A Generalization of the Method of Harmonic Balance[J].J Sound & Vibration,1986,111:5l5~518.
  • 4Bogoliubov N N,Mitropolsky Y A.Asymptotic Methods in the Theory of Non-linear Oscillations[M].Delhi:Hindustan Publishing,1961.
  • 5Mickens R E.Iteration Procedure for Determining Approximate Solutions to Nonlinear Oscillator Equations[J].J Sound & Vibration,1987,116:185~188

同被引文献23

  • 1李鹏松,吴柏生.达芬-谐波振子的改进解析逼近解[J].振动与冲击,2004,23(3):113-116. 被引量:6
  • 2李鹏松,孙维鹏.达芬-谐波振子解析逼近的新方法[J].吉林大学学报(理学版),2006,44(2):170-174. 被引量:6
  • 3Mickens R E. Mathematical and Numerical Study of the Duffing-Harmonic Oscillator [ J ]. J Sound Vib, 2001,244 (3) :563-567.
  • 4Nayfeh A H, Mook D T. Nonlinear Oscillations [ M]. New York: Wiley, 1979.
  • 5Mickens R E. Oscillations in Planar Dynamic Systems [ M ]. Singapore: Word Scientific, 1996.
  • 6WU Bai-seng, LI Peng-song. A Method for Obtaining Approximate Analytic Periods for a Class of Nonlinear Oscillators[J]. Meccanica, 2001,36: 167-176.
  • 7WU Bai-seng, LI Peng-song. A New Approach to Nonlinear Oscillations [ J ]. Journal of Applied Mechanics, 2001,68:951-952.
  • 8Gottlieb H P W.Simple Nonlinear Jerk Functions with Periodic Solutions[J].American Journal of Physics,1998,66:903-906.
  • 9Gottlieb H P W.Harmonic Balance Approach to Periodic Solution of Non-linear Jerk Equations[J].Journal of Sound and Vibration,2004,271:671-683.
  • 10Nayfeh A H,Mook D T.Nonlinear Oscillations[M].New York:Wiley,1979.

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部