期刊文献+

具有脉冲的时滞微分方程的周期解 被引量:3

Periodic Solutions of Delay Differential Equations with Impulses
下载PDF
导出
摘要 将小时滞Yoshizawa型周期解定理推广到脉冲时滞微分方程 ,并应用它得到了含脉冲的一类非线性扰动系统的周期解存在的充分条件 . For a class of impusive differential equation with delay the authors spread the Yoshizawa's theory about periodic solutions. By it a sufficient condition is gained for the existence of periodic solutions of the system with nonlinear perturb.
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第1期39-43,共5页 Journal of Sichuan University(Natural Science Edition)
关键词 周期解 脉冲时滞微分方程 非线性扰动系统 Yoshizawa型周期解定理 充分条件 delay differential equation impulse periodic solution
  • 相关文献

参考文献1

共引文献10

同被引文献25

  • 1李建利,申建华.脉冲微分方程正解的存在性(英文)[J].数学研究,2004,37(3):217-224. 被引量:3
  • 2李建利,申建华.具脉冲时滞的Duffing型方程的周期解[J].应用数学学报,2005,28(1):124-133. 被引量:11
  • 3惠静,陈兰荪.脉冲时滞微分方程的周期性和稳定性研究[J].数学学报(中文版),2005,48(6):1137-1144. 被引量:6
  • 4[1]Jia Junguo,Wang Miansen,Li Meili.Periodic Solutions for Impulsive Delay Differential Equations in The Control Model of Plankton Allelopathy[J].Chaos Solitons and Fractals,2007,32:962-968.
  • 5[4]Zhang Na,Dai Binxiang,Qian Xiangzheng.Periodic Solutions for A Class of Higher-dimension Functional Differential Equations with Impulses[J].Nonlinear Analysis,2002,68:629-638.
  • 6[6]Wu Haihui,Xia Yonghui,Lin Muren.Existence of Positive Periodic Solution of Mutualism System with Several Delays[J].Chaos Solitons and Fractals,2008,36:487-493.
  • 7Huang X K,Xiang Z G.2π-periodic solutions of duffing equations with a deviatig argument[J].Chinese Sci.Bull.,1994,39(3):201-203.
  • 8Li Y.Periodic solutions for delay Lotka-Volterra competition systems[J].J.Math.Anal.Appl.,2000(246):230-244.
  • 9Teng Z,Yu Y.Some new results of nonautonomous Lotka-Volterra competitive systems with delays[J].J.Math.Anal.Appl.,2000 (251):254-275.
  • 10Fan M and Wang K.Global existence of positive periodic solutions of periodic Predator-Prey system with infinite delay[J].J.Math.Anal.Appl.,2001 (262):1-11.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部