期刊文献+

Banerjee-GCD与Banerjee-Bound联合数组相关性测试 被引量:1

An Integrated Array Dependence Test Method Based on Banerjee-GCD and Banerjee-Bound Method
下载PDF
导出
摘要 以 Banerjee- GCD方法和 Banerjee- Bound方法为基础 ,充分考虑了两者的测试结果之间的相互影响以及程序并行化对相关性测试的要求 ,从而提出了一个在统一的框架下利用 Banerjee- GCD方法与 Banerjee- Bound方法对不同的相关向量进行测试的联合数组相关性测试方法 .该方法在保持执行时间效率的前提下提高了测试的精确性和结果的有效性 。 Dependence test is the most important part in a parallelizing compiler. There are many results on it: some are precise but slow, some are fast but only make an estimation on the dependence directions. Designing a good dependence test algorithm needs sophisticated negotiating between speed and accuracy. Our dependence test method is based on the Banerjee GCD and Banerjee Bound methods. Considering the most common cases in the test suit, we design our dependence test method for the purpose of loop parallelization. We find out that not all the dependence direction contribute equally to loop parallelization. A test of a small portion of the whole set of dependence directions covers most loop inter iteration dependences. So we test these directions in order to reduce the time complexity of the algorithm. Furthermore, rather than issue a new mathematical model to solve the linear equations, we use the information we could get in GCD and Bound test to extend the original algorithm. The main idea is: GCD test can find out a set of possible dependence vectors, then Bound test could check each bits of the vector and eliminate some dependence directions, which in fact does not exist. Further more, we could exchange information between GCD and Bound test to get more efficiency from the original one. Using the dependence distance, loop bounds, etc. in both GCD and Bound test, we could exploit the maximum precision out of these two famous fast dependence testing methods while preserving the high speed performance of our method. As a matter of fact, we even try to extend the original GCD and Bound test method to make it support non linear equations. By integrating these two dependence test method into one single algorithm and make the maximum use of them, we could provide a fast and ambitious dependence test method for the purpose of program parallelization.
出处 《计算机学报》 EI CSCD 北大核心 2002年第2期181-188,共8页 Chinese Journal of Computers
基金 上海市青年科技启明星计划 (99QD14 0 43 ) 高等学校博士学科点专项科研基金资助
关键词 程序并行化 相关性测试 Banerjee测试 联合数组 Banerjee-GCD法 Banerjee-Bound法 program parallelization, dependence test, Banerjee test
  • 相关文献

参考文献9

  • 1BanerjeeU.Dependenceanalysisforsupercomputing[]..1988
  • 2Goff G,Kennedy K,Tseng Chau-Wen.Practial dependence testing[].In: Proc the SIGPLAN Conference on Programming Language Design and Implementation.1991
  • 3Blume W,Eigenmann R.The range test : A dependence test for symbolic, non-linear expressions[].In: Proc Supercomputing’ Washington D C.1994
  • 4Pugh W.A practical algorithm for exact array dependence analysis[].Communications of the ACM.1992
  • 5Pugh W,Wonnacott D.Static analysis of upper and lower bounds on dependence and parallelism[].ACM Transactions on Programming Languages and Systems ( TOPLAS ).1994
  • 6Hummel J,Hendren L J,Nicolau A.A general data dependence test for dynamic pointer-based data structures[].In: Proc the ACM SIGPLAN’ Conference on Programming Language Design and Implementation.1994
  • 7Lichnewsky A,Thomasset F.Introducing symbolic problem solving techniques in the dependence testing phrases of a vectorizer[].In: Proc International Conference on Supercomputing St Malo France.1988
  • 8Li Zhi -Yuan,Yew Pen-Chung.Efficient interprocedural analysis for program parallelization and restructuring[].In: Proc the ACM SIGPLAN Conference on Parallel Programming:Experience with Applications Languages and System.1988
  • 9Li Zhi -Yuan,Yew Pen-Chung,Zhu Chuag-Qi.Data dependence analysis on multi -dimensional array references[].In:Proc the rd International Conference on SupercomputingCrete Greece.1986

同被引文献15

  • 1吴恩华.图形处理器用于通用计算的技术、现状及其挑战[J].软件学报,2004,15(10):1493-1504. 被引量:141
  • 2Baskaran M,Ramanujam J,Sadayappan P.Automatic C-toCUDA code generation for affine programs[C]//International Conference on Compiler Construction(ETAPS CC2010),2010:244-263.
  • 3Lee S,Min S J,Eigenmann R.Open MP to GPGPU:a compiler framework for automatic translation and optimization[C]//ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming(PPOPP2009),2009:101-110.
  • 4Zhu Q,Shen L,Gan X B,et al.A compiler framework for translating standard C into optimized CUDA code[C]//International Conference on Human-Centric Computing and Embedded and Multimedia Computing,2011:502-514.
  • 5Wolfe M.Implementing the PGI accelerator model[C]//Proceedings of the 3rd Workshop on General-Purpose Computation on Graphics Processing Units,NY,USA,2010:43-50.
  • 6Yang Y,Zhou H Y.Developing a high performance GPGPU compiler using cetus[EB/OL].[2014-06-03].http://people.engr.ncsu.edu/hzhou/cetus_wksp.pdf.
  • 7Rudy G.CUDA-CHi LL:a programming language interface for GPGPU optimizations and code generation[D].The University of Utah,USA,2010.
  • 8Han T D,Abdelrahman T S.Hi CUDA:a high-level directive-based language for GPU programming[C]//2nd Workshop on General Purpose Processing on Graphics Processing Units,Washington DC,USA,2009:52-61.
  • 9Li D,Cao H J,Dong X S,et al.GPU-S2S:a compiler for source-to-source translation on GPU[C]//Proceedings of the 3rd International Symposium on Parallel Architectures,Algorithms and Programming(PAAP2010),Dalian,China,2010:144-148.
  • 10Grosser T,Zheng H A R,Simbürger A,et al.Polly-polyhedral optimization in LLVM[C]//First International Workshop on Polyhedral Compilation Techniques(IMPACT'11),Chamonix,France,2011.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部