期刊文献+

由Markov网到Bayesian网 被引量:14

LEARNING BAYESIAN NETWORK BY FIRST LEARNING MARKOV NETWORK
下载PDF
导出
摘要 Markov网 (马尔可夫网 )是类似于 Bayesian网 (贝叶斯网 )的另一种进行不确定性推理的有力工具 .Markov网是一个无向图 ,而 Bayesian网是一个有向无环图 .发现 Markov网不需要发现边的方向 ,因此要比发现Bayesian网容易得多 .提出了一种通过发现 Markov网得到等价的 Bayesian网的方法 .首先利用信息论中验证信息独立的一个重要结论 ,提出了一个基于依赖分析的边删除算法发现 Markov网 .该算法需 O(n2 )次 CI(条件独立 )测试 ,CI测试的时间复杂度取决于由样本数据得到的联合概率函数表的大小 .经证明 ,假如由样本数据得到的联合概率函数严格为正 ,则该算法发现的 Markov网一定是样本的最小 I图 .由发现的 Markov网 ,根据表示的联合概率函数相等 ,得到与其等价的 Markov network is an another powerful tool besides Bayesian network, which can be used to do uncertain inference. Markov network is an undirected graph, while Bayesian network is a directed acyclic graph. Learning Markov network is easier than learning Bayesian network because it doesn't need to find the direction of an edge. A method of learning Bayesian network by first learning Markov network is given. Taking advantage of an important conclusion in information theory to test conditional independence, a dependency analysis based Markov network learning algorithm (edge deleting algorithm) is presented. The algorithm requires O(n 2) times CI(conditional independence) test, while the time complexity of a CI test depends on the size of the joint probability table which is obtained from the sample data. It has been proved that if the joint probability obtained from the sample data is strictly positive, the found Markov network must be the minimal I map of the sample. After finding a Markov network, an equivalent Bayesian network can be by representing the same joint probability.
出处 《计算机研究与发展》 EI CSCD 北大核心 2002年第1期87-99,共13页 Journal of Computer Research and Development
基金 国家自然科学基金资助 (69763 0 0 3 )
关键词 MARKOV网 BAYESIAN网 联合概率函数 不确定推理 人工智能 Markov network, Bayesian network, CI test, I map, joint probability
  • 相关文献

参考文献13

  • 1J Pearl. Probabilistic Reasoning inIntelligent Systems: Network of Plausible Inference. San Francisco, CA: Morgan Kaufmann,1988
  • 2林士敏,田凤占,陆玉昌.贝叶斯学习、贝叶斯网络与数据采掘[J].计算机科学,2000,27(10):69-72. 被引量:34
  • 3王双成,林士敏,陆玉昌.贝叶斯网络结构学习分析[J].计算机科学,2000,27(10):77-79. 被引量:10
  • 4邢永康,沈一栋.学习信度网的结构[J].计算机科学,2000,27(10):83-87. 被引量:8
  • 5J Suzuki. A construction of bayesian networks from databases based on a MDL scheme.In: Proc of the 9th Conf on Uncertainty in Artificial Intelligence. San Mateo, CA: MorganKaufmann, 1993. 266~273
  • 6Y Xiang, S K M Wong. Learning conditional independence relations from aprobabilistic model. Department of Computer Science, University of Regina, CA, Tech Rep:CS-94-03, 1994
  • 7D Heckerman. Learning bayesian network: The combination of knowledge andstatistical data. Machine Learning, 1995, 20(2): 197~243
  • 8J Cheng, D A Bell, W Liu. Learning belief networks from data: An information theorybased approach. In: Proc of the 6th ACM Int'l Conf on Information and KnowledgeManagement. Las Vegas,USA:ACM Press, 1997. 325~331
  • 9S K M Wong. An extended relational data model for probabilistic reasoning. Journalof Intelligent Information Systems, 1997, 9(2): 181~202
  • 10S K M Wong, C J Butz, D Wu. On the implication problem for probabilisticconditional independence. Department of Computer Science, University of Regina, CA, TechRep: CS-99-03, 1999

二级参考文献17

  • 1[1]Heckerman D. Learning Bayesian Networks: [Technical Report MSR-TR-95-02]. Microsoft Research, Microsoft Corporation, 1995
  • 2[2]Friedman N. Bayesian Network Classifiers. Machine Learning, 1997,29: 131~163
  • 3[3]Heckerman D. Bayesian Networks for Data Mining. Data Mining and Knowledge Discovery, 1997,1: 79~119
  • 4[1]Heckerman D. A Bayesian Approach to Causal Discovery: [Technical Report MSR-TR-97-05]. Microsoft Research, Microsoft Corporation, 1994
  • 5[2]Heckerman D. A Bayesian Approach to Learning Causal Networks: [Technical Report MSR-TR-95-04]. Microsoft Research, Microsoft Corporation, 1995
  • 6[3]Heckerman D. Learning Bayesian Networks: [Technical Report MSR-TR-95-02]. Microsoft Research, Microsoft Corporation, 1995
  • 7[4]Heckerman D. Learaning Bayesian networks:The Combination of Knowledge and Statistical Data. Mcahine Learning, 1995,20:197~243
  • 8[1]Verma T, Pearl J. Equivalence and synthesis of causal models. In: Proc. Of Sixth Conference on Uncertainty in AI, Boston, MA, Morgan Kaufmann, 1990. 220~227
  • 9[2]Heckerman D. Learning Bayesian Network:The Conhination of Knowledge and Statistical Data: [Technical Report MSR-94-09]. 1994
  • 10[3]Heckerman D. A tutorial on learning with Bayesian networks: [Technical Report ,MSR-TR-95-06]. 1995

共引文献49

同被引文献86

引证文献14

二级引证文献101

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部