期刊文献+

形状记忆合金热力学行为的模拟 被引量:7

Simulation to thermo-mechanial behavior of shape memory alloys
下载PDF
导出
摘要 基于塑性流动法则和马氏体相变动力学 ,引入马氏体体积分数和相变应力间的关系 ,对形状记忆合金的热力学行为进行了模拟 ,算例表明本文提出的形状记忆合金本构模型与实验结果比较吻合 ,且实施起来简单易行 ; Simulation to thermo-mechanical behavior of shape memory alloy, based on the plastic flow theory and martensitic transformation kinetics, is presented in this paper. The numerical examples show that the present constitutive model is in agreement with the experimental results, and can be developed easily. The finite element analysis is also carried out.
出处 《计算力学学报》 CAS CSCD 北大核心 2002年第1期48-52,共5页 Chinese Journal of Computational Mechanics
基金 铁道部科技开发基金 ( 99842 )
关键词 形状记忆合金 本构关系 相变 有限元 马氏体 相变应力 热力学行为 shape memory alloy constitutive model martensitic transformation finite element method
  • 相关文献

参考文献11

  • 1[1]Achenbach M. A model for memory alloys in plane strain[J].Int J Solids Struct, 1986,22(2):171-193.
  • 2[2]Graesser E J. A proposed three-dimensional consti-tutive model for shape memory alloys[J].J Intell Mater Syst and Struct, 1994,5:78-89.
  • 3[3]Tanaka K. A thermomechanical sketch of shape memory effect: one-dimensional tensile behavior[J].Res Mechanica, 1996,18:251-263.
  • 4[4]Liang C, Rogers C A. One-dimensional thermome-chanical constitutive relations for shape memory materials[J].J of Intell Mater Syst and Struct, 1990,1:207-234.
  • 5[5]Brinson L C. One dimensional constitutive behaviorof shape memory alloys: thermomechanical deriva-tion with non-constant material functions[J]. J Intell Mater Syst and Struct, 1993,4:229-242.
  • 6[6]Boyd G, Lagoudas D C. Thermomechanical consti-tutive model for shape memory materialspart I: the monolithic shape memory alloy[J].Int J Plasticity,1996,12:805-842.
  • 7[7]Sun Q P, Hwang K C. Micromechanics modeling for the constitutive behavior of polycrystalline shape memory alloys -I. derivation of general relations[J].J Mech Phys Solids, 1993,41(1):1-17.
  • 8[8]Trochu F, Yuan Y Q. Nolinear finite element simu-lation of superelastic shape memory alloy parts[J].Computers & Structure, 1997,62(5):799-810.
  • 9[9]Leblond J B, Devaux J, Devaux J C. Mathematical modeling of transformation plasticity in steels, I: Case of ideal - plastic phases[J].International of plasticity, 1989,5:551-572.
  • 10[10]Dye T E. An experimental investigation of the be-havior of nitinol [D]. Viginia Tech, 1990.

同被引文献172

  • 1张臻,沈亚鹏,王健.形状记忆合金短纤维增强弹塑性基体复合材料的力学行为[J].复合材料学报,2004,21(6):173-178. 被引量:7
  • 2姜袁,彭刚.SMA阻尼器在土木结构被动控制中的运用[J].应用力学学报,2004,21(4):88-92. 被引量:3
  • 3左晓宝,李爱群,倪立峰,陈庆福.超弹性形状记忆合金丝(NiTi)力学性能的试验研究[J].土木工程学报,2004,37(12):10-16. 被引量:48
  • 4陶宝祺.智能材料结构[M].北京:国防工业出版社,1999..
  • 5姚远.基于形状记忆合金的阻尼器在大跨度桥梁结构纵向振(震)动控制中的研究[D].广州大学,2008.
  • 6ROBERT C K. Structural damping with shape-memory alloy : one class device[ C ]. SPIE, 1995, 2445 - 240.
  • 7MAURO Doclce, DONATELLO Cardone, Robero Marnetto. Implementation and testing of passive control devices based on shape memory alloys [ J ]. Earthquake En- ergy and Structure Dynamics, 2000,29:945 -968.
  • 8PETER W C. Experimental and analytical studies of shape memory alloy dampers for structure control [ C ]. SPIE, 1995,2445:241 -251.
  • 9Auricchio F, Marfia S, Sacco E. Modeling of SMA materials: training and two way memory effects[J]. Computers and Structures, 2003,81 ( 24/25 ) : 2301 -2317.
  • 10Peultier B, Zineb T B, Patoor E. Macroscopic constitutive law of shape memory alloy thermomechanical behavior. Application to structure computation by FEM[J].Mechanics of Materials, 2006,38 ( 5/6 ) : 510 - 524.

引证文献7

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部