期刊文献+

外源氧化铁对水稻土甲烷形成的抑制 被引量:22

Suppression of methanogenesis by iron oxides in paddy soil
下载PDF
导出
摘要 通过添加不同氧化铁的土壤泥浆厌氧恒温培养实验发现 ,无定形氧化铁和纤铁矿能显著的降低水稻土中的H2 和乙酸浓度 ,并导致甲烷形成被抑制 .易还原氧化铁可使H2 的稳态浓度由对照的 2— 4mg m3 降低到 0 3— 1 0mg m3 ,并使得体系的Gibb’s自由能 (ΔGH)增大到 - 10kJ mol,从而有效地抑制了依赖H2 营养的产甲烷过程 .添加氧化铁同样能消耗体系中的乙酸 ,使乙酸浓度明显低于对照 。 Different iron oxides were added to anoxic incubated paddy slurries.The results showed that the concentrations of hydrogen and acetate reduced remarkablely, and the methane production was inhibited. Ferrihydrite and lepidocrocite may decrease the threshold concentration of H\-2 from 2—4?mg/m 3 to 0 3—1?mg/m 3, and increase the Gibb's free energy values to -10?kJ/mol, which may effectively inhibit hydrogenotrophic methanogenesis. Identically, ferrihydrite and lepidocrocite may also consume acetate in the system, but can not affects slightly on Δ G Ac value of acetoclastic methanogenesis.
出处 《环境科学学报》 CAS CSCD 北大核心 2002年第1期65-69,共5页 Acta Scientiae Circumstantiae
关键词 水稻土 外源氧化铁 甲烷形成 抑制 大气污染源 paddy soil iron oxides addition methanogenesis
  • 相关文献

参考文献17

  • 1[1]Neue H U, Roger P A. Rice agriculture: factors controlling emissions[A]. In: Khali, MAK (ed). Atmospheric methane: Sources, sinks and role in global change[C]. Berlin:Springer, 1993. 254-298
  • 2[2]Neue H U, Sass R L. Trace gas emissions from rice fields[A]. In: R G Prinn (ed). Global atmospheric-biospheric chemistry[C]. New York:Plenum Press, 1994. 119-147
  • 3[3]Liesack W, Schnell S, Revsbech N P. Microbiology of flooded rice paddies[J]. FEMS Microbiology Reviews, 2000, 24:625-645
  • 4[4]Watanabe I. Anaerobic decomposition of organic matter in flooded rice soils[A]. In: IRRI (ed.). Organic matter and rice[C]. Institute International Rice Research. Los Banos, 1984. 237-238
  • 5[5]Lovley D R, Goodwin S. Hydrogen concentrations as an indicalor of the predominant terminal electron-accepting reactions in aquatic sediments[J]. Geochimnica et Cosmochimica Acta, 1988, 52: 2993-3003
  • 6[6]Achtnich C, Bak F, Conrad R. Competition for electron donors among nitratr reducers, ferric iron reducers, sulfate reducers, and methanogens in anoxic paddy soil[J]. Biol Fertil Soils, 1995, 19: 65-72
  • 7[7]Achnich C, Schuhmann A, Wind T, et al. Role of interspecies H2 transfer to sulfate and ferric iron-reducing bacteria in acetate consumption in anoxic paddy soil[J]. FEMS Microbial Ecol, 1995, 16: 61-69
  • 8[8]Yao H, Conrad R. Thermodynamics of methane production in different rice paddy soils from China, the Philippines and Italy[J]. Soil Biology and Biochemistry, 1999, 31: 463-473
  • 9[9]Thauer R K, Morris J G. Metabolism of chemotrophic anaerobes: old views and new aspects[A]. In: Kelly D P, Carr N G (eds.), The Microbe 1984, Part Ⅱ, Prokaryotes and Eukaryotes[C]. Cambridge:Cambridge University Press, 1984. 123-168
  • 10[10]Conrad R. Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO)[J]. Microbiol Rev, 1996, 60(4): 609-40

同被引文献311

引证文献22

二级引证文献171

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部