摘要
较详细地研究了无规取向、无吸收椭球体粒子的T 矩阵收敛问题。首先 ,简要概括了nmax的 3种收敛方案和它们的基本特性。然后 ,应用 1993年提出的数学收敛方法 (M 方法 )和 1998年提出的物理收敛方法 (P 方法 )研究收敛问题。结果表明椭球粒子收敛精度对粒子的尺度参数 ,纵横比以及椭球体的种类 (例如 ,长 扁椭球 )有很强的依赖性。当粒子的尺度参数不太大时 ,甚至在极端纵横比的条件下 ,P 收敛方案优于M 收敛方案。
The convergence problems of the T-matrix approach for randomly oriented, nonabsorbing spheroids are studied in some details. Three convergence schemes over nmax and their basic characteristics are outlined briefly. Both the mathematical convergence procedure (the M--procedure)developed by Mishchenko in 1993 and our physical procedure (the P-procedure) proposed in 1998 are used to investigate the convergence problems. The results show that the convergence accuracy for spheroids depends strongly on the particle size parameter, the aspect ratio, and what kind of spheroids (i.e., prolate or oblate).When the particle size parameter is not too large, even in the extreme of the aspect ratio, the P-procedure provides better convergence accuracy than the M-procedure.
出处
《成都信息工程学院学报》
2001年第3期159-168,共10页
Journal of Chengdu University of Information Technology