期刊文献+

无规取向、无吸收非球形粒子光散射的T-矩阵方法收敛问题的研究:II.椭球体(英文)

Convergence of the T-matrix approach for randomly oriented, nonabsorbing, nonspherical particles,Part II: Spheroids
下载PDF
导出
摘要 较详细地研究了无规取向、无吸收椭球体粒子的T 矩阵收敛问题。首先 ,简要概括了nmax的 3种收敛方案和它们的基本特性。然后 ,应用 1993年提出的数学收敛方法 (M 方法 )和 1998年提出的物理收敛方法 (P 方法 )研究收敛问题。结果表明椭球粒子收敛精度对粒子的尺度参数 ,纵横比以及椭球体的种类 (例如 ,长 扁椭球 )有很强的依赖性。当粒子的尺度参数不太大时 ,甚至在极端纵横比的条件下 ,P 收敛方案优于M 收敛方案。 The convergence problems of the T-matrix approach for randomly oriented, nonabsorbing spheroids are studied in some details. Three convergence schemes over nmax and their basic characteristics are outlined briefly. Both the mathematical convergence procedure (the M--procedure)developed by Mishchenko in 1993 and our physical procedure (the P-procedure) proposed in 1998 are used to investigate the convergence problems. The results show that the convergence accuracy for spheroids depends strongly on the particle size parameter, the aspect ratio, and what kind of spheroids (i.e., prolate or oblate).When the particle size parameter is not too large, even in the extreme of the aspect ratio, the P-procedure provides better convergence accuracy than the M-procedure.
出处 《成都信息工程学院学报》 2001年第3期159-168,共10页 Journal of Chengdu University of Information Technology
关键词 T-矩阵方法 无吸收椭球粒子 数学收敛方法 物理收敛方法 光散射 T-matrix approach nonabsorbing spheroids mathematical convergence procedure physical procedure
  • 相关文献

参考文献21

  • 1H. C. van de Hulst, Light Scattering by Small Particles[M]. Dover, New York 1981, pp.470.
  • 2C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles[M]. Wiley, New York, 1983, pp. 530.
  • 3P. C. Watermem, Symmetry, unitarity, and geometry in electromagnetic scattering[J]. Phys. Rev. D3, 1971,825-839.
  • 4M. I. Mishehenko, Light scattering by randomly oriented axially symmetric particles[J]. J. Opt. Soc. Am. A,1991, 8: 871-882.
  • 5M. I. Mishchenko, Light scattering by size-shape distributions of randomly oriented axially symmetric particles of a size comparable to a wavelength[J]. Appl. Opt.,1993, 32: 4652-4666.
  • 6M. I. Mishchenko, L. D. Travis, T-matrix computations of light scattering by large spheroidal particles[J]. Opt. Commun.,1994, 109: 16-21.
  • 7M. I. Mishclenko, L. D. Travis, A. Macke, Scattering of light by polydisperse, randomly oriented, finite circular cylinders[J]. Appl. Opt.,1996, 35: 4927-4940.
  • 8D. J. Wielaard, M. I. Mishchenko, A. Macke, B. E. Carlson, Improved T-matrix computations for large, nonabsorbing and weakly absorbing nonspherical particles and comparison with geometrical-optics approximation[J]. Appl. Opt.,1997, 36: 4305-4313.
  • 9M. I. Mishchenko, L.D Travis, D. W. Mackowski, T-matrix computations of light scattering by nonspherical particles: A review[J]. J. Quant. Spectrosc. Radiat. Transfer,1996, 55: 535-575.
  • 10J. Ding, L. Xu, Study on convergence problem of T-matrix approach of light scattering by randomly oriented axially symmetric nonspherical particles. In Preprints of Conference on Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications[J]. AMS, 1998:257-260.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部