期刊文献+

压电薄板屈曲有限元分析及DKQ单元 被引量:5

THE BUCKLING ANALYSIS OF PIEZOELECTRIC THIN PLATES USING FINITE ELEMENT METHOD AND DKQ ELEMENT
下载PDF
导出
摘要 在机电耦合本构方程基础上,利用Hamilton原理推导了压电薄板屈曲分析的有限元特征方程和机电耦合的内力计算公式,在有限元实现中选择了基于Kirchhoff薄板假定的四边形薄板单元(DKQ单元),并给出该单元的几何刚度阵及其数值积分方法.在大型通用有限元分析和优化设计软件系统JIFEX中实现了该方法.给出的数值验证了 DKQ单元在屈曲分析和压电薄板静力分析中具有较高精度和收敛性,通过机械荷载和电荷载联合作用下的临界荷载计算,表明压电耦合效应能够影响结构的稳定性,可以通过改变外加电压对结构稳定性进行控制. To meet the requirements of the space engineering, especially aircraft, satellites and robot manufacture, the intelligent structures become an active research field in the recent years. The piezoelectric material, as an important part of intelligent structure materials, has not only the ability of carrying load, but also the mechanical-electric coupling property can serve as actuator and sensor. Because of mechanical-electric coupling effect, the analysis of the piezoelectric intelligent structures is more complicated than conventional materials. The exact solution of the piezoelectric structure is difficult to obtain and the research work of the numerical algorithm for the piezoelectric structures is necessary. The passing research works about piezoelectric intelligent structure are mainly focus on the static and dynamic characteristic. But it is not sufficient with the increasing engineering application of the piezoelectric material, the buckling stability should be considered. Considering mechanical-electric coupling effect, the paper derives the piezoelastic finite element equation of the buckling analysis for piezoelectric thin plate structuires with Hamilton pie. The DKQ element, based on Kirchhoff theory, is employ6d to form the piezoelectric element, because the DKQ element has a good behavior in the static analysis of the conventional material. Then the paper simply describes the formulation of the DKQ element, derives geometric stiffness matrix of DKQ element and detailed discusses different numerical integration technique between the elastic stiffness matrix and the geometry stiffness matrix. On the basis of above works, the stress of the piezoelectric thin plate is obtained and the characteristic equation of piezoelectric thin plate buckling is given. mom the equation we can find the extern load changes with the extern voltage. When the voltage brings tense stress, the structure buckling stability can be increased and when the voltage brings compressive stress, the structure buckling stability can be decreased. An FEM code is also implemented in the JIFEX, a general-purpose software for the finite element analysis and design optimization. By comparing the calculation results employing DKQ element with those calculated using the other methods, this paper firstly checks the high accuracy and convergence of the DKQ element in the thin plate elastic buckling and static piezoelectric analysis. Numerical example of a thin plat subjected to the electric and mechanical load shows that mechanical-electric coupling effect can affect the buckling stability of thin plates and regulating external voltages can control stability of piezoelectric thin plate. Numerical examples given in the paper also demonstrate the effectiveness of algorithm and the program in this paper.
出处 《力学学报》 EI CSCD 北大核心 2001年第4期568-576,共9页 Chinese Journal of Theoretical and Applied Mechanics
基金 国家重点基础研究专项经费(G1999032805) 高等学校骨干教师资助计划资助项目.
关键词 四边形薄板单元 压电薄板 智能结构 机电耦合 屈曲 有限元 几何刚度阵 哈密顿原理 荷载 稳定性 DKQ单元 intelligent structures, thin plate, mechanical-electric coupling, buckling, finite element, geometric stiffness matrix
  • 相关文献

参考文献4

二级参考文献26

  • 1陈万吉.精化直接刚度法及九参数三角形薄板单元[J].大连理工大学学报,1993,33(3):289-296. 被引量:15
  • 2陈万吉.精化直接刚度法与不协调模式[J].计算结构力学及其应用,1995,12(2):127-132. 被引量:12
  • 3陈绍慈,计算数学,1991年,13卷,3期,268页
  • 4胡雨村,力学进展,1991年,3卷,262页
  • 5龙驭球,土木工程学报,1987年,20卷,1期,1页
  • 6Shi Zhongci,J Comput Math,1984年,2卷,279页
  • 7唐立民,大连理工大学学报,1980年,19卷,2期,19页
  • 8Rao S,Appl Mech Rev,1994年,47卷,4期,113页
  • 9Hwang W S,AIAA J,1993年,31卷,5期,930页
  • 10Hwang W S,J Intel Mater Sys & Struc,1993年,4期,317页

共引文献31

同被引文献65

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部