期刊文献+

数据挖掘技术初探 被引量:18

An Overview of Data Mining Techniques
下载PDF
导出
摘要 数据挖掘技术已成为机器学习、数据库系统、人工智能等领域内热门的研究方向 .本文将讨论数据挖掘的基本概念 ,并在此基础上介绍、分析挖掘关联规则技术、决策树、聚类分析。 Data mining techniques have been a key topic in the areas of statistics, machine learning, database systems, artificial intelligence and data visualization. This paper will firstly discuss the basic concept of data mining and then analyze some widely used data mining techniques such as mining association rules techniques, decision tree, clustering analysis, data cube and etc.
出处 《小型微型计算机系统》 CSCD 北大核心 2002年第3期342-346,共5页 Journal of Chinese Computer Systems
基金 国家自然科学基金资助项目(60 0 73 0 12 ) 江苏省自然科学基金资助项目 教育部高等学校骨干教师资助计划 高等学校重点实验室访问学者基金资助项目 南京大学软件新技术国家重点实验室基金资助项目 武汉大学软件工程国家重点实验室开放基金资助项目 江苏省
关键词 数据挖掘 关联规则 决策树 聚类 数据管道 数据库 data mining association rules classification decision tree clustering data cube
  • 相关文献

参考文献25

  • 1R. Agrawal, T. Imeielinski, A. Swami. Mining association rules between sets of items in large databases[C]. Processing of ACM SIGMOD, May 1993. 207~216,
  • 2R.Agrawal, H.Mannila, R.Srikant, H.Toivonen, and A.Inkeri Verkamo. Fast discovery of association rules[A]. In U.Fayyad and et al, editors, Advances in Knowledge Discovery and Data Mining[M]. 307~328. AAAI Press, Menlo Park, CA, 1996.
  • 3R. Agrawal, and P. Yu. Online generation of association rules[C]. In 14th Intl. Conf. On Data Engineering, Feb. 1998.
  • 4M.-J Berry, G. Linoff. Data mining techniques for marketing, sales and customer support[M]. Wiley Computer Publishing, 1997.
  • 5L. Brieman, J. Friedman, R. Olshen, and C. Stone. Classifycation of regression trees[M]. Wadsworth, 1984.
  • 6S. Brin, R. Motwani, J. Ullman, and S. Tsur. Dynamic itemset counting and implication rules for market basket data[C]. In ACM SIGMOD Conf. Management of Data, May 1997.
  • 7S.Chaudhuri and U.Dayal. An overview of data warehousing and OLAP technology[J]. SIGMOD Record 26:65~74.
  • 8U. Fayyad, G. Piatetsky-Shapiro, P. Smyth. Knowledge discovery and data mining: towards a unifying framework[C]. Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD-96),Portland, Oregon. 1996.
  • 9J.Gray, S.Chaudhuri, A.Bosworth, A.Layman, D.Reichart, M.Venkatrao, F.Pellow and H.Pirahesh. Data cube: a relational aggregation operator generalizing group-by, cross-tab, and sub-totals[A]. data mining and knowledge discovery 1[M].1997 29~53. Kluwer Academic Publishers, 1997.
  • 10J.Han and Y.Fu. Discovery of multiple-level association rules from large databases[C]. Proceedings of the 21th International Conference on Very Large Data Bases, September, 1995.420~431

同被引文献189

引证文献18

二级引证文献226

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部