摘要
就一维强场模型 ,采用对称差商代替空间变量的 2阶偏导数 ,将含有Schr dinger方程的初边值问题离散成“非齐线性正则方程” ,它的齐方程的通解和非齐方程特解都由“辛变换生成” ,分别采用辛格式计算 .采用这种辛算法和R K法计算了一个数值例子 ,并与精确解作了比较 .结果表明 ,经长时间计算后 ,辛算法保持解的固有特征 ,而R
For an intense field model, the time\|dependent Schrdinger equation with initial and boundary conditions can be discretized into the inhomogeneous linear canonical equation by substituting the symmetric difference quotient for the partial derivative. As the general solution of its homogeneous equation and the particular solution of the inhomogeneous equation can be generalized by the symplectic transformation, it is a reasonable numerical method to use the symplectic scheme. To prove its utility, a simple example is described using the symplectic scheme and RK method, and compared with the exact solution. The results show that the solution using the symplectic scheme can preserve the intrinsic properties of the equations after a long evolution, but RK method cannot. [
出处
《计算物理》
CSCD
北大核心
2002年第1期62-66,共5页
Chinese Journal of Computational Physics
基金
国家 973项目
自然科学基金 ( 197710 41
10 0 740 19)资助项目