摘要
针对中潜伏期听觉诱发脑电的特点 ,提出了利用小波变换的多分辨分析技术滤除被测信号的强噪声成分 ,重构真实信号来实现对中潜伏期听觉诱发脑电的提取方法 ;通过实验仿真表明 :小波变换提取技术比其他传统提取方法更有效 ,可以减少试验次数 ,可以提供更为可靠的特征提取和模式识别的分析数据 。
The principle of wavelet transformation,multiresolution analysis and Mallat algorithm are introduced in this paper.According to the characters of MLAEP, the extraction method is proposed to denoise and reconstruct the MLEAP signal from strong noise background. The simulation results show that the extraction method based on wavelet transformation is more effective than other traditional methods.It can considerally reduce the tests,provide more useful analysis data for feature extraction and mode identification,and offer an important theory basis for clinic anesthesia monitoring.
出处
《桂林工学院学报》
2002年第1期66-70,共5页
Journal of Guilin University of Technology
基金
国家自然科学基金资助项目 (6 98710 10 )
关键词
小波变换
多分辨分析
MALLAT算法
麻醉监测
中潜伏期听觉诱发脑电信号
wavelet transformation
multiresolution analysis
Mallat algorithm
anesthesia monitoring
Mid-Latency Auditory Evoked Potentials(MLAEP)