期刊文献+

Szász算子的收敛速度的更精确估计

Accurater Estimates of Convergence of Szász Operator
下载PDF
导出
摘要 研究概率型算子Sz偄sz算子Sn(f ,x)对有界变差函数的收敛速度估计 ,利用H lder不等式及概率论的方法 ,对该算子的收敛速度估计作进一步改进 ,得到更精确的系数估计。 This thesis makes a new estimation on the rate of convergence of Szász operators for functions of bounded variation. Using Hlder′s inequality and probability method,it makes some improvements on the estimation of the rate of convergence of this operator and achieves an accurater coefficient estimation.
作者 张荣辉
出处 《泉州师范学院学报》 2002年第2期30-32,共3页 Journal of Quanzhou Normal University
关键词 Szαsz算子 收敛速度 POISSON分布 估计 Szász operator rate of convergence Poisson distribution estimates
  • 相关文献

参考文献4

二级参考文献11

  • 1[1]S.S. GUO and M. K. KHAN. On the rate of convergence of some operators on functions of bounded variation [J]J.Approx. Theory 1989,58: 90~ 101
  • 2[3]F. CHENG ,On the rate of conergence of Bernstein polynomials of functions of bounded variation[J]. J. Approx. Theory 1983,39:259~274
  • 3[4]W. FELLER. An Introduction to Probability Theory and its Applications Ⅱ[M]. Wiley:New York 1966:503~521
  • 4[5]F. HERZOG and J. D HILL. The Bernstein polynomils for discontinuous functions[J]. Amer. J. Math 1946,68:109~124
  • 5[6]X.M. ZENG. Bounds for Bernstein Functions and Meyer-Konig and Zeller Basis Functions[J]. J. Math. Anal. 1998,219:364~376
  • 6S S Guo and M K Khan. On the rate of convergence of some operators on functions of bounded variation[J]. J. Approx. Theory 1989,58:90 - 101.
  • 7F. Cheng, On the rate of convergence of Bernstein polynomials of functions of bounded variation[J]. J. Approx. Theory 1983,39:259- 274.
  • 8W. Feller. An introduction to probability theory and its applications II[M]. Wiley: New York 1966:503 - 521.
  • 9F Herzog and J D Hill. The Bernstein polynomials for discontinuous functions[Jl. Amer. J. Math. 1946,68:109 - 124.
  • 10X M Zeng. Bounds for Bernstein functions and Meyer-Konig and Zeller basis functions[J]. J. Math. Anal. 1998,219:364 - 376.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部