期刊文献+

广义中立型系统的渐近稳定性及数值分析 被引量:2

ASYMPTOTIC STABILITY AND NUMERICAL ANALYSIS FOR SYSTEMS OF GENERALIZED NEUTRAL DELAY DIFFERENTIAL EQUATIONS
原文传递
导出
摘要 This paper deals with the stability analysis of implicit Runge-Kutta methods for the numerical solutions of systems of generalized neutral delay differential equations. The stability behaviour of implicit Runge-Kutta methods is analysed for the solution of the generalized system of linear neutral test equations. After an establishment of a sufficient condition for asymptotic stability of the solutions of the generalized system, we show that a implicit Runge-Kutta method is NGPG-stable if and only if it is A-stable under some Lagrange interpolation condition. This paper deals with the stability analysis of implicit Runge-Kutta methods for the numerical solutions of systems of generalized neutral delay differential equations. The stability behaviour of implicit Runge-Kutta methods is analysed for the solution of the generalized system of linear neutral test equations. After an establishment of a sufficient condition for asymptotic stability of the solutions of the generalized system, we show that a implicit Runge-Kutta method is NGPG-stable if and only if it is A-stable under some Lagrange interpolation condition.
出处 《计算数学》 CSCD 北大核心 2001年第4期457-468,共12页 Mathematica Numerica Sinica
基金 上海市教委青年科学基金项目(99QA80) 上海市科学技术发展基金项目(00JC14057) 上海市高等学校科学技术发展基金
关键词 广义中立型系统 渐近稳定性 隐式Runge-Kutta方法 稳定性 数值分析 解析扰动定理 常微分方程 generalized neutral delay differential system, asymptotic stability, implicit Runge-Kutta methods, NGPG-stability
  • 相关文献

参考文献9

  • 1Yang B,J Comput Math Appl,1999年,37卷,89页
  • 2Zhang C J,J Comput Math Appl,1999年,38卷,113页
  • 3Lin Q,Numer Math,1999年,81卷,451页
  • 4Jiaoxun K,泛函微分方程的数值处理,1999年
  • 5Zhang C J,Sci China,1998年,41卷,11期,1153页
  • 6Guangda H,Appl Math Comput,1997年,87卷,247页
  • 7Guangdi H,Appl Math Comput,1996年,80卷,257页
  • 8Jiaoxun K,BIT,1994年,34卷,400页
  • 9Liu M Z,IMA J Numer Anal,10卷,1期,31页

同被引文献6

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部