期刊文献+

二元分布函数的密度收敛

Density Convergence of 2-Dimensional Distributions
下载PDF
导出
摘要 设 { ( Xi,Yi) ,i≥ 1 }是独立同分布二维随机向量列 ,其共同分布函数为 F.设 F属于 G的吸引场 ,本文假定边缘分布满足 Von-Mises条件 ,主要考虑二维极大值向量 Mn 密度收敛局部一致成立的问题 .本文将 Resnick[3 Let {(X i,Y i), i≥1 } be i.i.d 2 dimensional random vectors with common distribution F(x) . By assuming that F is in the domain of attraction of G and the marginal distribution functions satisfy Von Mises condition, we mainly discuss the locally uniform convergence related to density of { M n }, i.e. The paper proves the main results Theorems 1 and 2, which generalize Resnick's result to 2 dimensional case.
出处 《工科数学》 2001年第6期32-40,共9页 Journal of Mathematics For Technology
关键词 密度收敛 吸引场 二元分布函数 随机向量列 边缘分布 Von-Mises条件 一致收敛 density convergence domain of attraction regular variation
  • 相关文献

参考文献5

  • 1De Haan L. On Regular Variation and Its Application to the Weak Convergence of Sample Extremes[M]. Mathematical. Centre Tract 32, Amstendam :Mathematics centre, 1970.
  • 2Cheng Shihong. Approximation to the expectation of a function of order statistics and its applications[J]. ACTA Mathematicas Application Sinica, 1997,13 (1), 71 - 86.
  • 3Resnick S I. Extreme values, Regular variation and point processes[M]. Springer-Verlag, New York, 1987.
  • 4Billingsley P. Probability and Measure[M]. Wiley, New York, 1979, 287.
  • 5Huang Xin. Statistics of Bivariate Extreme Values[M]. Erasmus University Rotterdam, Januari, 1992, 34-40.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部