摘要
本文讨论了一类具p-Laplacian算子型奇异边值问题(φp(x'))'+a(t)f(x(t))=0,x(0)-βx(0′)= 0,x(1)+ δx′(1)=0多重正解的存在性,其中φp(x)=|x|p-2x,p>1 通过使用不动点指数定理, 在适当的条件下,建立了这类边值问题存在多重正解的充分条件.这些结果能被用来研究椭圆边值问 题多重径向对称解的存在性.
The authors discuss the existence of multiple positive solutions for a singular boundary value problems with p-Laplacian (φp(x'))'+a(t)f(x(t)) = 0, x(0)-βx'(0) = 0, x(1)+δx'(1) = 0, where, φp(x) = |x|p-2x, p > 1. By using the fixed-point index theorem, the sufficient conditions of the existence of multiple positive solutions for the boundary value problems under some conditions are established. These results can be applied to studying the existence of the multiple radial solutions for the elliptic boundary value problems.
出处
《数学年刊(A辑)》
CSCD
北大核心
2001年第6期721-728,共8页
Chinese Annals of Mathematics
基金
国家自然科学基金(No.19831030)资助的项目.