期刊文献+

具有时迟的Volterra方程的周期解分歧现象 被引量:1

BIFURCATION OF PERIODIC SOLUTION IN VOLTERRA EQUATION WITH FINITE DELAY
下载PDF
导出
摘要 本文考虑具有时迟的Volterra方程其中α,β,δ,γ为正常数.给出方程(E)出现周期解分歧现象的条件并给出重要参数μ(ε),T(ε),β(ε)的计算方法. The authors investigate the following Volterra equation where α, β, δ, γ are positive constans. Some conditions under which bifurcation phenomenon occurs to the solutions of Equation (E), and the computaion formulae for determining the direction of the Hopf bifurcation are obtained.
出处 《数学年刊(A辑)》 CSCD 北大核心 2001年第6期773-782,共10页 Chinese Annals of Mathematics
基金 吉林省教委基金(吉教合字(99)第42号)资助的项目.
关键词 HOPF分歧 内积 直接和 Poincare标准型 周期解 VOLTERRA方程 Hopf bifurcation, Periodic solution, Direct sum, Inner product
  • 相关文献

参考文献1

  • 1陈兰荪,数学生态学模型与研究方法,1998年

同被引文献7

  • 1宋永利,韩茂安,魏俊杰.多时滞捕食-食饵系统正平衡点的稳定性及全局Hopf分支[J].数学年刊(A辑),2004,25(6):783-790. 被引量:27
  • 2Shi C L, Li Z, Chen F D. Extinction in nonautonomous Lotka -Voherra competitive system with infinite delay and feedback controls[J]. Nonlinear Anal Real World Appl, 2012, 13:2 214-2 226.
  • 3Li Z, Han M A, Chen F D. Influence of feedback controls on an autonomous Lotka- Voherra Competitive system with infinite delays [ J ]. Nonlinear Anal Real World Appl, 2013, 14 : 402 - 413.
  • 4Liu M, Wang K. A note on a delay Lotka - Voherra eompetiteve system with random perturbations [ J ]. Appl Math Letters, 2013, 26:589-594.
  • 5He X. Stability and delays in a predator-prey systems[J]. J Math Anal Appl, 1996, 108:355 -370.
  • 6Chen L J, Chen F D. Global stability of a Leslie - Cower predator - prey model with feedback controls [ J ]. Appl Math Lett, 2009, 22:1 330- 1 334.
  • 7Gopalsamy K. Stability and oscillations in delay differential equations of population dynamics [ M 1- Dordrecht: Kluwer Acsdem- ic, 1992.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部