期刊文献+

拟常曲率黎曼流形中具有平行平均曲率向量的子流形 被引量:3

Submanifolds with Parallel Mean Curvature Vector in a Riemannian Manifold of Quasi Constant Curvature
下载PDF
导出
摘要 讨论了拟常曲黎曼流形中具有平行平均曲率向量的等距浸入子流形 ,给出了一个积分不等式 ,推广和改进了文献 [1,2 ]的结果 . In this paper, we study the isometric immersion submanifolds with parallel mean curvature vector in a Riemannian Manifold of quasi constant curvature, we also give an integral inequality,and improve the results in[1]、[2].
出处 《数学研究》 CSCD 2001年第4期379-385,共7页 Journal of Mathematical Study
基金 国家自然科学基金资助项目 (197710 10 )
关键词 拟常曲率 黎曼流形 曲率向量 子流形 等距侵入 积分不等式 riemannian manifold of quasi constant curvature parallel mean curvature vector
  • 相关文献

参考文献3

  • 1Xu H W,Trans Amer Math Soc,1995年,347页
  • 2Li A M,Arch Math,1992年,58卷,582页
  • 3Bai Zhenguo,Chin Ann Math B,1988年,9卷,1期,32页

同被引文献16

  • 1宋卫东.关于拟常曲率空间中2-调和子流形[J].数学物理学报(A辑),2006,26(3):426-430. 被引量:14
  • 2姜国英.Riemann流形间的2-调和的等距浸入.数学年刊:A辑,1986,(7):130-144.
  • 3CHENG S Y,YAN S T.Maximal space-like hypersurfaces in the Lorentz-Minkowski spaces[J].Ann of Math,1976,104:407-419.
  • 4SIMONS J.Minimal varietisa in a riemannian manifolds[J].Ann of Math,1968,88:62-105.
  • 5CHEN BANGYEN.Some results of Chern-do Carmo-Kobayashi type and lenght of second fundamental form[J].Indiana Univ Math J,1971,20(12):1175-1185.
  • 6CHENG Q M.Complete space-like submanifolds in a de Sitter space with parallel mean curvature vetor[J].Math Z,1991,206:333-339
  • 7BAI Zheng-guo.Minimal submanifolds in a Riemannian manifold of quasi constant curvature[J].Chin Ann of Math,1988,9B(1):32-37.
  • 8LI An-min,LI Ji-min.An intrinsic rigidity theorem for minimal submanifolds in sphere[J].Arch Math,1992,58:582-594.
  • 9CHERN S S,do CARMO M,KOBAYASHI S.Minimal Submanifolds of a Sphere with Second Fundamental Form of Constant Length[M].Shiing-Chen Chern Selected Papers.Berlin:Springer-Verlag,1978:393-409.
  • 10YAU Shing-tung.Submanifolds with constant mean curvature(Ⅰ)[J].Amer J Math,1975,97(1):76-100.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部