摘要
设 X为实 Banach空间,为 m-增生算子,为有界算子(未必连续),而C(T+I)-1为紧算子.假设,使得.则.进一步假设为强增生的,而C为闭的,则,其中Br表示中心在原点半径为r的开球.作为上述零点定理的应用,当T,C为奇算子时,我们获得一些新的映象定理.
Let X be a real Banach space and let T: X be an m-accretive operator. Let be a bounded operator (not necessarily continuous) such that is compact. Suppose that for every Jx such that Then we have. Assume, furthermore, that is strongly accretive, then, where Br(O) denotes the open ball of X with centre at zero and radius r > 0. As applications of the above zero theorem, we deduce many new mapping theorems. When T and C are odd operators, we also obtain some new mapping theorems.
出处
《系统科学与数学》
CSCD
北大核心
2001年第4期446-454,共9页
Journal of Systems Science and Mathematical Sciences
基金
国家自然科学基金资助课题