期刊文献+

三对角系统的最佳向后扰动分析

Structured Backward Error for Tridiagonal Systems
下载PDF
导出
摘要 用一种新方法研究了三对角方程组及对称三对角方程组计算解的最佳向后扰动分析。由于这两类方程组的系数矩阵具有特殊结构 ,因而本文结果不能从已有结果直接导出。所用方法亦可用于研究 KKT及 SQD等结构线性系统的最佳向后扰动分析。 In this paper the tridiagonal and symmetric tridiagonal systems are studied. In view of the special structure of the Coefficient matrices, the structured backward errors (SBEs) of such systems are defined and a technique for obtaining explicit expressions of the SBEs is described. The techniques, described here, are suitable to other systems such as KKT and SQD.
出处 《青岛海洋大学学报(自然科学版)》 CSCD 北大核心 2002年第2期319-324,共6页 Journal of Ocean University of Qingdao
基金 山东省自然科学基金 (项目 Y2 0 0 0 A0 4 )
关键词 最佳向后扰动 三对角系统 对称三对角系统 向后误差分析 系数矩阵 structured backward error tridiagonal system symmetric tridiagonal system
  • 相关文献

参考文献7

  • 1[1]Wilkinson J H. The Algebraic Eigenvalue Problem. [M] Oxford: Oxford University Press, 1965
  • 2[2]Rigal J L, Gaches J. On the compatibility of a given solution with the data of a linear system. [J] J Assoc Comput Mach, 1967, 14:543~548
  • 3[3]Bunch J R, Demmel J W, Van Loan G F. The strong stability of algorithms for solving symmetric linear system. [J] SIAM J Matrix Anal Appl, 1989,10:494 ~499
  • 4[4]Sun J G. Optimal Backward Perturbation Bounds for Linear Systems and Li near Least Squares Problems. [R] Report UMINF 96-15, Umea: Umea University, 1 996
  • 5[5]Sun J G. Structured backward errors for KKT systems. [J] Lin Alg Appl , 1999, 288: 75~88.
  • 6[6]Sun J G. Bounds for the structured backward errors of Vandemonde system s. [J] SIAM J Matrix Anal Appl, 1998,20(1): 45~59
  • 7[7]Higham N J. Accuracy and Stability of Numerical Algorithms. [M] Phila delphia: SIAM, 1996

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部