期刊文献+

基于图像内容和人眼视觉特性的JPEG压缩编码 被引量:2

JPEG Compressed Encoding Based on the Input Image Contents and Property of HVS
下载PDF
导出
摘要 静止图像压缩主要包括变换、量化和编码 ,其中量化对压缩的性能 (图质和压缩比 )起决定作用 ,它涉及质量因子和基本量化表的确定。从输入图像的统计特性出发 ,通过比特率控制算法 ,统计图像的活动性水平 ,选择适当的质量因子使码流文件大小不超过给定值。并根据人类视觉系统的特征 ,计算出更能反映人眼特性的基本量化表 ,将二者结合起来用在JPEG基本压缩系统中 ,使系统的整体性能在率失真理论的意义上得到优化。软件验证表明 ,采用此算法进行压缩 ,在保证码流文件大小的同时 。 Among transformation, quantization and encoding steps in still image compression, quantization is the key of the performances(i.e. image quality and compression ratio) of compression, which is related to the determination of quality factor and basic quantization table. In this paper, based on the statistical characteristics of the input image, it is guaranteed that the file size of the compressed code stream is no more than the predefined size with the bit rate control algorithm which is realized through the calculation of the image activity level and appropriate selection of the quality factor. According to the property of HVS(human visual system), the image-specific basic quantization table is worked out. The above two methods are combined and applied to the JPEG baseline compression system, and the overall performance is optimized in the light of rate-distortion theory. Software verification result reveals that with this algorithm, the file size of the compressed image is guaranteed and the visual effect of the decompressed image is good.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2002年第2期93-95,102,共4页 Systems Engineering and Electronics
关键词 JPEG 人类视觉系统 图像内容 图像编码 压缩编码 JPEG Bit-rate control Rate-distortion Human visual system Quality factor Basic quantization table
  • 相关文献

参考文献8

  • 1Chen Wen-Hsiung.Scene Adaptive Coder[J].IEEE Trans.on Communications,1984,l32(6):225-232.
  • 2Jan Biemond.Image Modeling and Quality Criterion[J].IEEE Trans.on ASSP,1999,27(6): 649-652.
  • 3Nganet King N.Adaptive Cosine Transform Coding of Images in Perceptual Domain[J].IEEE Trans.on ASSP,1989,37(11): 1743-1749.
  • 4Stockham Thomas G.Image Processing in the Context of a Visual Model[J].Proc.of IEEE,1972,60(7): 828-842.
  • 5Nikil Jayant Nikil.Signal Compression Based on Models of Human Perception[J].Proc.of IEEE,1993,81(10): 1385-1422.
  • 6Peterson Heidi A.An Improved Detection Model for DCT Coefficient Quantization[R].SPIE,1993,1913: 191-201.
  • 7ISO/IEC JTCI/SC29/WG10[S].JPEG Committee Draft CD10918,1991.
  • 8Kannan Ramchandran,Martin Vetterli.Rate-Distortion Optimal Fast Threholding with Complete JPEG/MPEG Decoder Compatibility[C].IEEE Trans.on Image Proceeding,1994.

同被引文献10

  • 1Jerome M. Shapiro. Embedded Image Coding Using Zerotrees of Wavelet Coeffcients. IEEE TRANSACTIONS ON SIGNAL PROCESSING, Vol. 41, No. 12, pp. 3445~3462, Dec 1993.
  • 2Amir Said, William A. Pearlman. A New, Fast, and Efficient Image Codec Based on Set Partitioning in Hierarchical Trees. IEEE TRANSACTIONS ON SYSTEMS FORVIDEO TECHNOLOGY, Vol. 6, No. 3, pp. 243 ~ 250,June 1996.
  • 3David Taubman. High Performance Scalable Image Compression with EBCOT. IEEE transactions on image processing, VOL. 9, NO. 7, pp. 1158~1170, JULY 2000.
  • 4JPEG2000 Image Coding System. JPEG2000 Final Committee Draft Version 1.0,16 March 2000.
  • 5Mallat S.A theory for multiresolution signal decomposition:The wavelet representation[J].IEEE Trans On Pattern Analysis And Machine Intelligence, 1989,11 (7):674-693.
  • 6徐佩霞,孙功宪.小波分析与应用实例(第二版)[M].合肥:中国科学技术大学出版社,2001.
  • 7J.Villasensor, et al. Wavelet filter evaluation for image compression[J]. IEEE Trans. Image Proc, 1995, 2:1053-1060.
  • 8徐昊,俞军,骆晓,庄天戈.基于小波分析的一种自适应图像压缩编码[J].计算机工程与应用,2002,38(4):72-75. 被引量:4
  • 9杨旭东,王万良.基于改进的MSE准则的小波图像压缩[J].计算机辅助设计与图形学学报,2003,15(4):402-405. 被引量:10
  • 10徐林,邱敏华,高昌淑,邵谦明.一种基于小波变换的图像压缩编码方法[J].复旦学报(自然科学版),2004,43(1):115-118. 被引量:4

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部