期刊文献+

基于模糊聚类的乳房癌诊断 被引量:3

Diagnosis of Breast Cancer Based on the Method of Fuzzy Clustering
下载PDF
导出
摘要 研究了乳房肿瘤的分类问题.通过对500个已知肿瘤性质(良性或恶性)细胞核的显微图像的10个量化特征进行统计分析,利用模糊聚类法,建立了模糊聚类判别分类模型,给出了判别的阈值曲线,分析了最佳分界点,并得到了判别的阈值.进一步地,对未知乳房肿瘤性质的病例进行诊断.数值模拟表明:误判概率为6.2%,本文方法具有良好的应用前景. In this paper, the problem of discriminating classification of breast tumor is studied. The statistical and quantization characteristic of 10 variables in the micro\|image of the 500 cell\|cores with known nature is analyzed. The method of fuzzy clustering is used. And the discriminating modeling of fuzzy clustering is established. During the course, the discriminating curve of threshold value is given. And based on the optimizing dividing point, the discriminating threshold value is obtained. Finally, the tumor of unknown nature is diagnosed and its feature is determined. The example indicates that the probability of mis\|discrimination is 6.2%.
出处 《装备指挥技术学院学报》 2002年第1期92-95,共4页 Journal of the Academy of Equipment Command & Technology
关键词 乳房癌 模糊聚类 误判概率 数学模型 诊断 breast cancer fuzzy clustering probability of mis\|discrimination mathematical modeling
  • 相关文献

参考文献3

  • 1中国医学百科全书编辑委员会. 中国医学百科全书[M]. 上海:科学技术出版社,1982.
  • 2方开泰.实用多元统计分析[M].华东师范大学出版社,1992..
  • 3肯德尔 M.多元分析[M].北京:科学出版社,1983.

共引文献8

同被引文献19

  • 1李蕾,王洪源,赵金霞,苏茵.Logistic回归分析在建立类风湿关节炎早期诊断模型中的应用[J].中华临床医师杂志(电子版),2011,5(10):2940-2945. 被引量:12
  • 2曾光.现代流行病学方法与应用[M].北京:北京医科大学中国协和医科大学联合出版社,1996,1..
  • 3GUO Q. Neural networks for classification : a survey [ I ]. IEEE Tran. on System, Man, and Cybernetics - Parts, 2000,30(4) :451 -462.
  • 4BADOIU M, HARPELED S. Approximate clustering via core - sets [ C ].//Web of Science, ISI Proceedings 2007. [s. l. ]:[s. n. ] :2007:250 -257.
  • 5Sahan S, Polat K, Kodaz H, et al. A new hybrid method based on fuzzy-artificial immune system and K-NN algorithm for breast cancer diagnosis. Computers in Biology and Medicine, 2006,37 : 415 -423.
  • 6S. Forrest, S. A. Hofmeyr, A. Somayaji, Computer immunolo- gy, Communications of the ACM, 1097,40(10) : 88-96.
  • 7S. A. Hofmeyr, S. Forrest, Architecture for an artificial immune system, Evolutionary Computation, 2000,8(4) .. 443-473.
  • 8L. N. De Castro, J. I. Timmis, Artificial immune systems: a novel computational intelligence approach, London: Springer-Ver- lag, 2002.
  • 9Timmis J, Neal M. A resource limited artificial immune system for data analysis. Knowledge Based Systems, 2001, 14(3-4) : 121 -130.
  • 10王俊杰,陈景武.BP神经网络在疾病预测中的应用[J].数理医药学杂志,2008,21(3):259-262. 被引量:17

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部