期刊文献+

一个描述原子高里德伯态的数学物理方程

下载PDF
导出
摘要 本文用一个具有二个正则奇点和一个非正则奇点的二阶微分方程描述原子。假设原子中价电子的势能有如下形式 V(r)=-(e^3/r)[1+δ+α′/(r+γ′)+β′/(r+y′)~3] δ是离化度,通过解含V(r)的薛定谔方程可获的解析解,各种状态的势和波函数中的參数可用量子数亏损这个量表示。波函数的形状和节点数与Hartzee-Fock-Slater(HFS)理论一致。计算了与波函数内、外区的行为有关的典型物理量,并与实验和HFS理论进行了比较。用此模型计算的高里德伯态的振子强度和极化率比较满意。
出处 《数学物理学报(A辑)》 CSCD 北大核心 1991年第1期105-112,共8页 Acta Mathematica Scientia
基金 中国科学院和国家自然科学基金
  • 相关文献

参考文献5

  • 1李白文,1988年
  • 2李白文,J Phys B:At Mol Opt Phys,1988年,21卷,2205页
  • 3李白文,物理学报,1987年,36卷,998页
  • 4张承修,1986年
  • 5刘炳模,1983年

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部