摘要
在这篇文章中,我们研究四阶半线性热方程a(x,t)(?)/(?)t(△_t u)-sum from i,j=1 to n(?)/(?)_i(a_tj(x)(?)/(?)x_j(△_t u))=f(u,△_t u)在已给初边界条件下解的爆破,我们利用凸性方法证明了上述问题的解,在有限时内变为无穷,假若α(x,t),α_ij(x),f(u,△_tu)与初边值满足某些条件.
In this paper, we study the blow-up of the solution of the fourth-order semilinear heat equationwith given initial and boundary condition . Using concavity method, we proved that che solution of above problems become infinite in finite time, provided a(x,t) , an(x) , f(u,Δ,u) and initial-boundary-value satisfy some conditions .