摘要
短语边界的识别是浅层句法分析或组块分析的基础 ,对真实文本的处理具有重要意义。在一个含有 6 442 6词的汉语树库的支持下 ,本文设计并实现了基于神经元网络的汉语短语边界自动识别模型。初步实验结果显示 ,该模型的界定准确率为 93 2 4 % (封闭测试 )和 92 5 6 % (开放测试 )。
Prediction of Chinese phrase boundary location is the base of shallow parsing or chunk parsing.It is also very important for processing real texts.With the support of our Chinese treebank including 64426 words, this paper designs and implements a method for automatic prediction of Chinese phrase boundary location based on neural network. The preliminary results show that the precision is 93.24%(close testing) and 92.56%(open testing) respectively.
出处
《中文信息学报》
CSCD
北大核心
2002年第2期20-26,共7页
Journal of Chinese Information Processing
基金
国家重点基础研究发展规划项目的支持 (编号 :G19980 30 5 0 7)