期刊文献+

对下楼法的进一步讨论 被引量:2

A FURTHER APPROACH TO THE DOWNSTAIRS METHOD FOR FINDING GLOBAL MINIMIZERS OF A FUNCTION
原文传递
导出
摘要 引言为求一个多元函数的总体极小点,在[1]中作者提出了一种新方法——下楼法(简称DSM法)。但还有三个问题没解决。 1)在找到函数的一个局部极小点之后,我们构造了一个非线性方程组,如何去判断这个方程组是否有解? 2)如果上述方程组有解存在,用什么方法可以一定把解求出来? 3)用DSM法时怎么才能判断出我们已经找到了函数的总体极小点?换句话说。 The three remaining problems in the downstairs method (DSM) proposed by the author (1), which finds a global minimizer of nonlinear functions of several variables by finding lower and lower minimizers, are dealt with theoretically in this paper. The solutions to the problems make DSM perfect. Under some conditions it guarantees the finding of a global minimum point of a nonlinear function or its good approximation and also gives the criterion for terminating the algorithm. In addition, this method can be used to deal with functions not only in the multidimensional case but also in the one-dimensional case.
作者 何渝
出处 《数值计算与计算机应用》 CSCD 北大核心 1991年第2期124-126,共3页 Journal on Numerical Methods and Computer Applications
  • 相关文献

参考文献3

  • 1何渝,数值计算与计算机应用,1989年,10卷,4期,193页
  • 2王德人,非线性方程的区间算法,1987年
  • 3李庆扬,非线性方程组的数值解法,1987年

同被引文献25

  • 1秦泽辉,何渝.求解多元函数总体极小谷峰法的验证与测试[J].北京工商大学学报(自然科学版),2004,22(4):36-39. 被引量:2
  • 2Anderssen R S. Global optimization[M]. Anderssen R S, Jennings L S, Ryan D M. University of Queensland Press, 1972.
  • 3Hartman J K. Some experiments in global optimization [ J ]. Naval Postgraduate School,Montery, California NpsssHH73041A, 1972.
  • 4Solis F J, Wets J B. Minimization by random search techniques [J]. Mathematics of Operations Research,1981,6(1).
  • 5Haario H, Sakesman E. Simulated annealing process in general state space[J]. Adv Appl Prob, 1991,23:866-893.
  • 6Fogel D B. An introduction to simulated evolutionary optimization [J]. IEEE Transactions on Neural Networks, 1994 , 5 (1) : 3- 14.
  • 7Dixon L C W, Szego G P, Eds. Towards global optimization [M]. Vol. 1,2, Pub. Co. , Holland,North-Holland, Amsterdam, 1978.
  • 8Powell M J D. An efficient method for finding the minimum of a function of several variables without calculating derivative[J]. Computer J. 1964, (7):155-162.
  • 9Branin F H. Solution of nonlinear DC network problem via differential equations [C ]. International IEEE, Conference on systems networks & computers, Oaxtepex, Mexico, 1971.
  • 10Levy A V. The tunneling algorithm for the global minimization of functions [C]. Present at the Dundee Conference on Numerical Analysis, Dundee,Scotland, 1977.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部