期刊文献+

图K_nH_((5n/2)-4)的升分解

THE ASCENDING SUBGRAPH DECOMPOSITION OF K_n-H_((5N/2)-4)
原文传递
导出
摘要 Alavi等人给出了图的升分解的概念并猜测任何一个有正数条边的图都可以升分解.Faudree等1987年证明了当完全图Kn的子图H至多有n—1条边时,Kn-H可以升分解.马克杰等1997年证明了当H至多含有n条边时,Kn-H可以升分解.作者1999年证明了当H的边数小于3n/2时,Kn-H可以升分解.本文将证明当H的边数小于(5n/2)-4时Kn-H有升分解. Alavi and his collaborators defined the concept of ascending subgraph de-composition of a graph and conjectured that every graph with positive size has an ascending subgraph decomposition. In 1987, Faudree et al. proved that Kn- Hn-1 has a star ascending subgraph decomposition, where Kn is the complete graph with order n and Hn-1 is a subgraph of Kn with size n-1. In 1997, Ma Kejie and Chen Huaitang proved that Kn- Hn has a ascending subgraph decomposition when the size of Hn is not greater than n. In 1999, Zhao Guangfeng et al. proved Kn- H has a comet ascending subgraph decomposition when the size of H is less than 3n/2 This paper has proved that Kn- H has a comet ascending subgraph decomposition when the size of H is less than 5n/2- 4.
出处 《系统科学与数学》 CSCD 北大核心 2002年第1期14-28,共15页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金(60074014)资助课题.
关键词 慧星 升分解 猜想 简单图 完全图 Graph, comet, ascending subgraph decomposition, conjecture.
  • 相关文献

参考文献1

二级参考文献8

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部