摘要
考虑回归模型:yi=xiβ+g(ti)+σiei,1<i<n,其中σ_i~2=f(ui),(xi,ti,ui)是固定非随机设计点列,f(·)和g(·)是未知函数,β是待估参数,误差{ei}为NA变量.我们对β的最小二乘估计βn和加权最小二乘估计Bn,在适当的条件下得到了它们的强相合性.
Consider the heteroscedastic regression model: yi=xiβb+g(ti)+σiei, 1< i<n, where σ_i^2=f(ui)$. Here the design points (xi,ti,ui) are known and nonrandom, g and f are unknown functions, β is an unknown parameter to be estimated, and the errors {ei} are negatively associated random variables. For the least squares estimator βn and the weighted least squares estimator βn of β, we establish their strong consistency under suitable conditions.
出处
《应用概率统计》
CSCD
北大核心
2002年第1期60-66,共7页
Chinese Journal of Applied Probability and Statistics
基金
安徽省教委自然科学基金资助项目