摘要
L-拓扑空间(X,△)称为一 Lowen空间若△有一组由层特征函数构成的基,即△中形如a∧U,a∈L,U X的元素构成△的一组基.若L=[0,1];则(X,△)是一Lowen空间当且仅当(X,△)是一 Lowen意义下的fuzzy邻域空间.通过在函数空间上引入适当的L-拓扑结构,证明了若0∈L是一素元并且Lowen空间(X,△)的开集格是一连续格,则(X,△)是Lowen空间范畴中一指数对象.特别地,若一fuzzy邻域空间的开集格连续,则它是FNS中一指数对象.
An L-topological space (X,△) is called a Lowen space if △ has a basis consisting of leveled characteristic functions, that is to say, the elements in △ of the form a ∧ U, a∈L,U X, is a basis for △. In the case L = [0,1], (X, △) is a Lowen space if and only if (X, △) is a fuzzy neighborhood space in the sense of Lowen. By introducing some natural L-topologies for function spaces it is proved in this paper that if 0 ∈ L is a prime then a Lowen space (X, △) is exponential in the category of Lowen spaces provided that its open-set lattice is continuous. Particularly a fuzzy neighbourhood space is exponential in FNS if its open-set lattice is continuous.
出处
《数学年刊(A辑)》
CSCD
北大核心
2002年第1期33-40,共8页
Chinese Annals of Mathematics
基金
国家自然科学基金(No.19831040
No.10071053)
四川省青年科技基金(No.457)资助的项目.