期刊文献+

A Note on L^p Boundedness for Maximal Singular Integrals on Product Domains

A Note on L^p Boundedness for Maximal Singular Integrals on Product Domains
下载PDF
导出
摘要 The L p boundedness for maximal singular integral operators on product domainsT *f(x,y)= sup ε 1,ε 2>0∫ |u|>ε 1 ∫ |v|>ε 2 Ω(u,v)|u| n|v| m f(x-u, y-v) d u d v = sup ε 1,ε 2>0|T ε 1,ε 2 f(x,y)|are discussed in this paper, where Ω(u,v)∈L q(S n-1 ×S m-1 ) and ∫ S m-1 Ω(u′,v′) d v′=0, ∫ S n-1 Ω(u′,v′) d u′=0 for every u′∈S n-1 , v′∈S m-1 . The L p boundedness for maximal singular integral operators on product domainsT *f(x,y)= sup ε 1,ε 2>0∫ |u|>ε 1 ∫ |v|>ε 2 Ω(u,v)|u| n|v| m f(x-u, y-v) d u d v = sup ε 1,ε 2>0|T ε 1,ε 2 f(x,y)|are discussed in this paper, where Ω(u,v)∈L q(S n-1 ×S m-1 ) and ∫ S m-1 Ω(u′,v′) d v′=0, ∫ S n-1 Ω(u′,v′) d u′=0 for every u′∈S n-1 , v′∈S m-1 .
作者 王梦
出处 《Northeastern Mathematical Journal》 CSCD 2001年第2期143-150,共8页 东北数学(英文版)
基金 TheNNSFC ( 1 9631 0 80 )&NSFZJ ( 970 1 7)
关键词 product domain maximal operator fourier transform product domain, maximal operator, fourier transform
  • 相关文献

参考文献6

  • 1Javier Duoandikoetxea,José L. Rubio de Francia.Maximal and singular integral operators via Fourier transform estimates[J].Inventiones Mathematicae.1986(3)
  • 2Fefferman ,R,Stein ,E .M.Singularintegralsonproductspaces[].Advances in Mathematics.1982
  • 3DonaldKrug.Singularintegralsinproductdomainsandthemethodofrotations[].ProcAmerMath Soc.1988
  • 4Duoandikoetxea,J.Multiplesingularintegralsandmaximalfunctionsalonghypersurfaces[].Ann InstFourier(Grenoble).1986
  • 5DuoandikoetxeaJ,RubiodeFrancia.MaximalandsingularintegraloperatorsviaFouriertransformestimates[].International Journal of Mathematics.1986
  • 6FanDashan,PanYibiao.Singularintegraloperatorswithkernelssupportedbysubvarieties[].American Journal of Mathematics.1997

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部