期刊文献+

关于图的代数连通度的注记(英文) 被引量:4

Note on the Algebraic Connectivity of a Graph
下载PDF
导出
摘要 n阶连通图G的代数连通度、点连通度和边连通度分别记作α(G) ,κ(G)和λ(G) .本文给出了当 2 κ(G) n- 2时 ,α(G) =κ(G)成立的充要条件 ,讨论了α(G)的代数重数以及相应于特征值α(G)的特征向量的性质 .最后给出了当 1 λ(G) n- 2时 ,α(G) =λ(G)的充要条件 . Let G be a connected graph of order n whose algebraic connectivity, vertex connectivity, and edge connectivity are α(G), κ(G), and λ(G), respectively. First, an equivalent condition is given for α(G)=κ(G) when 2κ(G)n-2 . And the algebraic multiplicity of α(G) and the property of eigenvectors corresponding to α(G) are discussed when the above equality holds. By the obtained results, the equivalent condition for α(G)=λ(G) is also established when 1λ(G)n-2 .
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2002年第1期1-6,共6页 JUSTC
基金 TheProjectSupporecdbyNSFC (No .199710 86)
关键词 代数连通度 点连通度 边连通度 LAPLACIAN矩阵 充要条件 特征向量 graph algebraic connectivity vertex connectivity edge connectivity Laplacian matrix
  • 相关文献

参考文献9

  • 1[1]Fiedler M. Algebraic connectivity of graphs[J]. Czechoslovak Mathematical Journal, 1973, 23: 298~305.
  • 2[2]Merris R. Laplacian matrices of graphs: a survey[J]. Linear Algebra A ppl., 1998, 197/198: 143~176.
  • 3[3]Fiedler M. A property of eigenvectors of nonnegative symmetric matrices and its applications to graph theory[J]. Czechoslovak Mathematical Journal, 1975, 25: 607~618.
  • 4[4]Grone R, Merris R. Algebraic connectivity of trees[J]. Czechosl ovak Mathematical Journal, 1987, 37: 660~670.
  • 5[5]Merris R. Characteristic vertices of trees[J]. Linear and Multilinear Algebra, 1987, 22: 115~131.
  • 6[6]Kirkland S. A bound on algebraic connectivity of a graph in terms of th e number of cutpoints[J]. Linear and Multilinear Algebra, 2000, 47: 93~103.
  • 7[7]Johnson C R, Horn R A. Matrix analysis[M]. New York: Academic Press, 1985, 179.
  • 8[8]Merris R. Laplacian graph eigenvectors[J]. Linear Algebra Appl.,1998, 278: 221~236.
  • 9[9]Kirkland S, Fallat S. Perron components and algebraic connectivity for weighted graphs[J]. Linear and Multilinear Algebra, 1998, 44: 131~138.

同被引文献19

  • 1尹书华,束金龙,吴雅容.树的移接变形与代数连通度[J].华东师范大学学报(自然科学版),2005(2):6-15. 被引量:3
  • 2Fiedler M. Algebraic Connectivity of Graphs. J. Czech. Math., 1973, 23:298-305.
  • 3Fiedler M. A Property of Eigenvectors of Nonnegative Symmetric Matrices and its Application toGraph Theory. J. Czech. Math., 1975, 25:619-633.
  • 4Merris R. Characteristic Vertices of Trees. Linear and Multilinear Algebra, 1987, 22:115-131.
  • 5Grone R, Merris R. Algebraic Connectivity of Trees. J. Czech. Math., 1987, 37:660-670.
  • 6Grone R, Merris R. Ordering Trees by Algebraic Connectivity. Graphs and Combinatorics, 1991, 6: 229-237.
  • 7Kirkland S, Neumann M, Shader B. Characteristic Vertices of Weighted Trees via Perron Values. Linear and Multilinear Algebra, 1996, 40:311-325.
  • 8Kirkland S, Neumann M. Algebraic Connectivity of Weighted Trees under Perturbation. Linear and Multilinear Algebra, 1997, 42:187-203.
  • 9Kirkland S, Fallat S. Perron Components and Algebraic Connectivity for Weighted Graphs. Linear and Multilinear Algebra, 1998, 44:131-138.
  • 10Kirkland S, Fallat S. Extremizing Algebraic Connectivity Subject to Graph Theoretic Constraints. Electron. J. Linear Algebra, 1998, 3:8-74.

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部