期刊文献+

实空间上的闭子集与相似包含关系(英文)

Closed Sets and Similar Containing Relation on the Real Spaces
下载PDF
导出
摘要 PaulErd s曾提出如下关于实直线R的问题 :是否对R的每一个无限子集X ,都存在一个具有正测度 (Lebesgue测度 )的闭子集E ,使得E的任何子集都不相似于X(E的任何子集都不与X线性同胚 ) .1 984年 ,Falconer证明了如下结论 :对于一个满足limxn =0和limxn+1xn =1的单调递减的正实数列 {xn},Erd s问题有一个部分肯定的解答 .本文将证明 :上述关于数列的条件可以替换为更一般的 (弱一些的 )条件 .最后把本文的相应结论推广到有限维欧氏空间Rn 中 . Paul Erds once posed the following problem about real line R: is it true that, for every infinite set X, there is a closed set E with positive lebesgue measure such that E doesn't contain any subset similar to X (i.e., there is no subset of E, which is a linear homeomorphic image of X). In 1984, K. J. Falconer proved the following: for a decreasing sequence of positive numbers {x n} such that \%lim\% x n=0 and \%lim\%x n+1 x n=1, Erds problem has a partial positive answer. This paper will prove that: the requirement for the sequence can be replaced by a more general (weaker) requirement. Finally we will generalize corresponding result to n dimension Euclidean space.
作者 叶盛
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2002年第1期22-28,共7页 JUSTC
关键词 LEBESGUE测度 线性稠度 相似映射 正交映射 实空间 闭子集 无限子集 相似包含关系 Lebesgue measure linear density ball (interval) similar mapping orthogonal mapping
  • 相关文献

参考文献4

  • 1[1]John C. Oxtoby, Measure and Category[M]. New York: Springer, 1 971.
  • 2[2]Falconer K J. On a problem of Erds on sequences and measurable sets[J ]. Proc. Amer.Math.Soc,1984,90:77~78.
  • 3[3]J Arias de Reyna. Some results connected with a problem of Erds [J]. Proc. Amer.Math.Soc.,1983,89:291~292.
  • 4[4]Ye Sheng. A problem related to Erds conjecture[J]. Sichuan Daxue Xue bao.,1990,24(4):498~499.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部