期刊文献+

范例库中特征项权重的发现技术 被引量:4

Discovery Techniques on Attribute Weighting in Case Base
下载PDF
导出
摘要 系统地探讨了在范例库中引入一系列可以使用的数据挖掘技术 ,以期提高范例推理系统中知识获取的自动化程度 .为了准确地表达范例比较间的本质特征 ,重点讨论了应用于范例库上特征项赋权的基本技术 ,并提出了一个自适应发现算法 ,然后进行了实验 。 Data mining approaches used in case base have been researched systematically. Data mining techniques may automate the acquisition of the knowledge and heighten the whole competence of the intelligent system. In order to represent characteristics comparison between cases, it is suggested that data mining techniques could be used in attribute weighting, and one adaptive algorithm is put forward. The experimental result shows that this method has good accuracy and better performance than other methods.
出处 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第2期168-172,共5页 Journal of Xiamen University:Natural Science
基金 国家自然科学基金项目 (6 0 0 75 0 15 ) 福建省教育厅科研项目 (2 0 0 1kj0 0 2 )
关键词 范例推理 数据挖掘 范例库 特征项 权重 知识获取 自适应发现算法 知识发现 case-based reasoning data mining case base attribute weight
  • 相关文献

参考文献11

  • 1[1]Mario Lenz.Case-based reasoning :from foundations to applications[M].Berlin:Springer,1998.
  • 2[2]David Leake,Andrew Kinley,David Wilson.Proceedings of the Fifteenth International Joint Conference on Artificial Intelligence[C].Japan:Nagoya,1997.246-251.
  • 3[3]Hanney K,Keane M.Proceedings of the Third European Workshop on Case-based Reasoning[C].Lausanne.1996.178-192.
  • 4[4]Azuaje F,Dubitzky W,black N,et al.Discovering relevance knowledge in data:a growing cell structure approach[J] .IEEE Transactions on systems,man,and cybernetics,2000,30(3):448-460.
  • 5[5]Smith B,Keane M T.Proc.14th International Joint Conference on Artificial Intelligence[C].Morgan Kaufmann,1995,337-382.
  • 6[6]Kraslawski A,Pedrycz W,Nystrom L.Fuzzy neural network as instance generator for case-based reasoning system[J].Neural Computing & Applications,1999,8:106-113.
  • 7[7]Salzberg S L.A nearest hyperrectangle learning method[J].Machine Learning ,1991,6:251-276.
  • 8[8]Wettschereck D,Dietterich T G.An experimental comparison of the nearest neighbor and nearest hyperrectangle algorithms[J].Machine Learning,1995,19:5-28.
  • 9[9]Kira K,Rendell L A.Proceedings of the 9th International Conference on Machine Learning [C].Scotland:Aberdeen,Morgan Kaufmann,1992,249-256.
  • 10[10]Stanfill C,Waltz D.Toward memory-based reasoning[J].Communications of the ACM,1986,29:1213-1228.

同被引文献26

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部