摘要
研究三维空间中半线性波方程utt-△u=εf(u ,ε) , t >0 ,u(0 ,x ,ε) =u0 (x ,ε) ,ut(0 ,x ,ε) =u1 (x ,ε) ,(其中 x∈R3 ,u是一个实值未知函数 ,△ =∑3i =1 2 x2 i,ε充分小且 0 <|ε|≤ε0 1,)整体解的渐近性 ,得到了在C2 空间中时间T =∞时形式近似解的合理性及适定性 .
This paper deals with the asymptotic theory of initial value problems for semilinear wave equations in three space dimensions. The well posedness and validity of formal approximations about time T =∞ are discussed in the classical sense of C 2. These results describe the validity of formal global solutions.
出处
《四川师范大学学报(自然科学版)》
CAS
CSCD
2002年第2期154-158,共5页
Journal of Sichuan Normal University(Natural Science)