期刊文献+

四种景天属植物对锌吸收和累积差异的研究(英文) 被引量:22

Differences of Uptake and Accumulation of Zinc in Four Species of Sedum
下载PDF
导出
摘要 采用营养液培养试验 ,比较研究了 4种景天属植物对Zn的吸收、积累和运输特性。结果表明 ,东南景天(SedumalfrediiHance)耐Zn毒的能力远强于珠芽景天 (S .sarmentosumBunge)、凹叶景天 (S .bulbiferumMakino)和垂盆草 (S .emarginatumMigo) ,其地上部和根系的干物质产量随着Zn浓度的增加而逐渐减少 ;当浓度≤ 40mg·L-1时 ,东南景天的地上部和根系的干物质产量均随Zn浓度的增加而增加 ,其地上部Zn含量、积累量及其Zn运输速率均显著高于珠芽景天、凹叶景天和垂盆草 ;当Zn浓度低于 80mg·L-1时 ,东南景天地上部Zn含量随着营养液中Zn浓度的增加而增加 ,在 80mg·L-1浓度 ,其地上部Zn含量高达 19.0 9mg·g-1。东南景天的地上部Zn含量 /根系Zn含量的比值大于 1,而株芽景天、凹叶景天和垂盆草的地上部Zn含量 /根系Zn含量比值小于 1。东南景天是在我国首次发现的具有生物量大。 Four species of Sedum L. were grown in nutrient solution for the comparison of their Zn uptake and accumulation. S. alfredii Hance showed much greater tolerance to Zn than the other three species. Shoot and root yields of S. sarmentosum Bunge, S. bulbiferum Makino, and S. emarginatum Migo decreased with increasing Zn concentration in the solution, while shoot and root yields of S. alfredii increased when Zn concentration was ≤80 mg·L -1. At 80 mg·L -1 Zn, Zn concentration in shoots of S. alfredii reached 19.09 mg·g -1. S. alfredii was also more efficient in Zn translocation from roots to shoots, while Zn concentration in shoots was much higher than in roots. However, this was not the case for the other three species. The results showed that S. alfredii is a Zn hyperaccumulator and could be useful for the phytoremediation of Zn-contaminated soils.
出处 《Acta Botanica Sinica》 CSCD 2002年第2期152-157,共6页 Acta Botanica Sinica(植物学报:英文版)
基金 国家杰出青年科学基金 ( 3992 5 0 2 4)~~
关键词 锌耐性 超积累 景天属植物 锌吸收 锌累积 zinc uptake hyperaccumulation, Sedum alfredii
  • 相关文献

参考文献16

  • 1[1]Baker A J M, Brooks R R. Terrestrial higher plants which hyperaccumulate metallic elements. Biorecovery, 1989, 1:81-97.
  • 2[2]Reeves R D, Baker A J M. Metal-accumulating plants. Raskin H, Ensley B D. Phytoremediation of Toxic Metals: Using Plants to Clear up the Environment. New York: John Wiley & Sons. Inc., 2000. 231-246.
  • 3[3]Nedelkoska T V, Doran P M. Characteristics of heavy metal uptake by plant species with potential for phytoremediation and phytomining. Minerals Engineering, 2000, 13:549-561.
  • 4[4]Raskin I, Smith R D, Salt D E. Phytoremediation of metals: using plants to remove pollutants from the environment. Curr Opin Biotech, 1997, 8:221-226.
  • 5[5]Ebbs S D, Lasat M M, Brady D J, Cornish J, Gordon R, Kochian L V. Phytoextraction of cadmium and zinc from a contaminated site. J Environ Qual, 1997, 26:1424-1430.
  • 6[6]Salt D E, Smith R D, Raskin I. Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol, 1998, 49:643-668.
  • 7[7]Watanabe M E. Phytoremediation on the brink of commercialization. Environ Sci Technol, 1997, 31:182A-186A.
  • 8[8]Ebbs S D, Kochian L V. Toxicity of zinc to Brassica species: implication for phytoremediation. J Environ Qual, 1997, 26:776-781.
  • 9[9]Ebbs S D, Kochian L V. Phytoextraction of zinc by oat (Avena sativa), barley (Hordeum vulgare), and Indian mustard (Brassica juncea). Environ Sci Technol, 1998, 32:802-806.
  • 10[10]Yang X, Baligar V C, Martens D C, Clark R B. Cadmium effects on influx and transport of mineral nutrients in plant species. J Plant Nutr, 1996, 19:643-656.

同被引文献363

引证文献22

二级引证文献493

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部