期刊文献+

舰船混沌信号的奇异系统分析研究 被引量:2

CHAOTIC SIGNALS OF SHIPS BASED ON THE SINGULAR SYSTEM ANALYSIS
下载PDF
导出
摘要 利用奇异系统分析方法研究了低信噪比混沌信号的相空间重构。通过对不同信噪比洛伦兹信号以及四类目标舰船信号进行重构 ,表明该方法比传统的延迟坐标法具有更大的优越性。通过计算状态轨迹的L2 范数 ,对混沌信号的奇异谱进行了定量描述 。 The state space reconstruction of chaotic signals having low S/N ratio was investigated by means of Singular System Analysis (SSA). After the reconstruction of Lorenz signals with different S/N ratios and four types of ship noise signals, it is found that SSA has more advantages than the Method of Delay (MOD) as an traditional method in chaos theory. By calculating the L 2 norm of state trajectories, the singular spectrum of chaotic signal is quantitatively determined. It suggests a new method for the feature extraction in chaotic signatls.
出处 《兵工学报》 EI CAS CSCD 北大核心 2002年第1期102-105,共4页 Acta Armamentarii
基金 国防科技预研基金资助项目 (2 0 0 0J5 .3 .2HK0 3 0 7)
关键词 奇异值分解 相空间重构 低信噪比混沌信号 水声信号 水声探测 声纳 chaos, singular value decomposition, state space reconstruction
  • 相关文献

参考文献5

二级参考文献25

  • 1刘中,顾红,朱志文,刘国岁.动目标多卜勒信号的分维特征[J].信号处理,1995,11(1):62-64. 被引量:3
  • 2恽伟君,朱钦章,段根宝,郭振玲.船舶螺旋桨避振器模拟装置试验研究[J].振动与冲击,1996,15(1):5-12. 被引量:3
  • 3樊养余 尚久浩.用双谱确定信号的幅值和相位[J].西北轻工业学院学报,1993,(1).
  • 4章新华 王骥程 等.基于小波变换的舰船辐射噪声特征提取[J].声学学报,1997,22(2):139-144.
  • 5陶笃纯.噪声和振动谱中线谱的提取和连续谱平滑[J].声学学报,1984,9(6):337-344.
  • 6丁钰平.目标被动信号神经网络的识别研究:硕士学位论文[M].东南大学水声信息处理实验室,1995..
  • 7宋爱国 陆佶人.基于AR模型和进化RBF网的被动声纳目标识别[J].南京大学学报,1997,33:79-81.
  • 8陶笃纯.噪声和振动谱中线谱的提取和连续谱的平滑[J].声学学报,1984,9(6):337-344.
  • 9韦冈,电子学报,1996年,24卷,1期,34页
  • 10章新华,博士学位论文,1996年

共引文献58

同被引文献19

  • 1Rechtschaffen A, Kales A. A manual of standardized terminology techniques and scoring system for sleep stages of human subjects[M] Washington D C: Government Printing Office, Public Health Service 1968:3-7.
  • 2Estrada E, Nazeran H, Nava P, et al. EEG feature extraction for classi- fication of sleep stages[C]. Proceedings of the 26th Annual Internatio- nal Conference. San Francisco, CA, USA: IEEE EMBS. 2004:196-199.
  • 3Romero S, Ma anas MA, Barbanoj MJ. A comparative study of autom- atic techniques for ocular artifacts reduction in spontaneous EEG sign- als based on clinical target variables: a simulation case[J]. Comput Bi- ol Med, 2008, 38(3): 348-360.
  • 4Kumar P, Arumuganathan R, Sivakumar K, et al. A wavelet based statistical method for de-noising of ocular artifacts in EEG signals[C]. International Journal of Computer Science andNetwork Security, 2008, 8(9): 87-91.
  • 5Shao Shiyun, Shen Kaiquan, Ong Chongjin, et al. Automatic EEG artifact removal: a weighted support vector machine approach with error correction[J]. IEEE Trans Biomed Eng, 2009, 56(2): 336-344.
  • 6Hallez H, De Vos M, Vanrumste B, et al. Removing muscle and eye artifacts using blind source separation techniques in ictal EEG source imaging[J]. Clin Neurophysiol, 2009, 120(7): 1262-1272.
  • 7Crespo-Garcia M, Atien za M, Cantero JL. Muscle artifact removal from human sleep EEG by using independent component analysis[J]. Ann Biomed Eng, 2008, 36(3): 467-475.
  • 8Park H, Han J, Jeong D, et al. A study on the elimination of the ECG artifact in the polysomnographic EEG and EOG using AR model[C] Proceedings of the 20th Annual International Conference. Hong Kong SAR, China: 1EEE Engineering Medicine Biology Society, 1998:1632 -1635.
  • 9Park H, Jeong D, Park K. Automated detection and elimination of periodic ECG artifacts in EEG using the energy interval histogram method[J]. IEEE Trans Biomed Eng, 2002, 49(12): 1526-1533.
  • 10Gao J, Sultan H, Tung W, et al. Denoising nonlinear time series by adaptive filtering and wavelet shrinkage: a comparison [J]. IEEE Signal Processing Letters, 2010, 17(3): 237-240.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部