期刊文献+

上证综合指数混沌模型的动力学特性分析 被引量:4

Dynamic Characters Analysis of Shanghai Composite Chaotic-Model
下载PDF
导出
摘要 通过对上海证券综合指数动力学模型的混沌特性进行深入研究 ,针对模型的混沌特性 ,应用Schwarz导数对系统的演化过程做了定量描述 ,利用Sharkovskii定理和符号动力学对模型的相图、分叉图、暗线方程进行了分析 ,得到了系统的MSS序列 ,给出该模型不稳定轨道和混沌参数区间的确定方法·为证券市场中的内在规律的研究发展 ,提供了一个有益的探讨 。 Schwarz derivative was used to quantify the changing process for the system according to the chaotic characteristics. At the same time Sharkovskii theorem and symbolic dynamics were used to analyze different sections of model,such as phase figures,bifurcation diagrams,dark line equation. MSS sequences of model were obtained,and the method used to make unstable track and chaotic parameter section was given. The study provides beneficial discuss for the inner rule developing of securities market. And it also provides useful experiment for application in economics of nonlinear chaotic dynamics.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2002年第4期311-314,共4页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目 (699740 0 8) 国家教育部博士点学科专项科研基金资助项目 (2 0 0 0 14 5 12 )
关键词 MSS序列 暗线方程 上证综合指数 混沌模型 动力学特性 上海证券市场综合指数 Schwarz derivative Sharkovskii theorem MSS sequences dark line equations dynamics system track
  • 相关文献

参考文献2

二级参考文献5

共引文献13

同被引文献56

  • 1高天.非线性波动方程解的全局性态[J].锦州师范学院学报:自然科学版,1991,(1):21-36.
  • 2李大潜 陈韵梅.非线性发展方程[M].北京:科学出版社,1999.49-144.
  • 3Klainerman S.Global existence for nonlinear wave equation[J].Communication on Pure Applied Mathematics,1980,38(1):43—101.
  • 4Bellissard J,Bohigas O,Casati G,et a1.A pionecr of chaos [J].Physica D,1999,131(1/4):ix—xv.
  • 5Li T Y.Yorke J A.Period three implies chaos[J].American Mathematics Monthly,1975,82(9):985—987.
  • 6Hartle J B, Hawking S. Wave function of the universe[J].Physical Review D, 1983,28(12):2960-2975.
  • 7John F. Blow up for quasilinear waveequations in three space dimensions [J]. Communication on Pure and Applied Mathematics, 1981,34(1):29-51.
  • 8Yagasaki K, Uozumi T. A new approach for controlling chaotic dynamical system[J]. Physica Letters A, 1998,238(6):349-357.
  • 9Main J.Wunner G.Periodic orbit of quantization mixed regular chaotic systans[J].Physical Review Letters,1999,82(8):3038—3041.
  • 10Grassberger, P. , & I. Procaccia, 1983, Characterization of strange attractors[ J]. Physical Review Letters, 50:346- 349.

引证文献4

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部