摘要
本文利用多模压缩态理论 ,研究了第 种强度不等的非对称两态叠加多模叠加态光场|Ψ(ab) 〉q 的任意奇数阶等阶 N次方 Y压缩特性 .结果发现 :在压缩阶数 N=2 p+1的条件下 ,无论 p=2 m还是 p =2 m+1 (m =0 ,1 ,2 ,3 ,… ,… ) ,只要构成态 |Ψ(ab) 〉q的两个不同的量子态|{ - Zj(a) * }〉q与 |{ - i Zj(b) * }〉q 的各对应模的强度 (即平均光子数 )和初始相位都不相等 ,亦即Rj(a) ≠ Rj(b) 和φj(a) ≠φj(b) (j=1 ,2 ,3 ,… ,q) ,并且 qj =1R(a) (2 p+ 1)j = qj =1R(b) (2 p+ 1)j ,则当各对应模的初始相位φj(a) 与φj(b) 、各对应模的初始相位差 (φj(a) -φj(b) ) ,态间的初始相位差 (θ(a R)nq -θ(b I)nq )以及光子干涉项的幅度 qj =1R(a)j R(b)j 等分别满足一定的量子化条件时 ,态 |Ψ(ab) 〉q 的第一及第二这两个正交分量总可分别呈现出周期性变化的、任意奇数阶等阶 N次方 Y压缩效应 .这一结果 ,与现有报道的结果截然不同 .
In this paper,by utilizing the theory of multi-mode squeezed states,the property of odd number-order equal-order N-th power Y-squeezing effect on a new type of multi-mode light field state of differ intensity of asymmetry superimpositions state|Ψ (ab) Ⅱ> q with distinguishable two quantum states in the kind (Ⅱ) .It is found that when squeezed order N=2p+1,no matter what p=2m or p=2m+1(m=0,1,2,3,...,...),while the quantization conditions are satisfied by constructed state |Ψ (ab) Ⅱ> q with distinguishable two quantum states |{-Z j (a) * }> q and |{-iZ j (b) * }> q of the intensity of corresponding mode (that is so-called everage photon number) and its initial phases is different,that is so-called R (a) j≠R (b) j and φ (a) j≠φ (b) j(j=1,2,3,...,...,q) and qj=1R (a)(2p+1) j≠qj=1R (b)(2p+1) j,while the initial phases of corresponding mode (φ (a) j-φ (b) j),the difference of initial phases of states (θ (aR) nq -θ (bI) nq ) and the range of photon interference term R (a) jR (b) jetc.the first and the second quadrature component of state |Ψ (ab) Ⅱ> q can always present the effect of periodic changed,any odd number-order equal-order of N-th power Y-squeezing.
出处
《光子学报》
EI
CAS
CSCD
北大核心
2002年第3期266-272,共7页
Acta Photonica Sinica
基金
陕西省自然科学基金 (批准号 :2 0 0 0 SL1 0 )
陕西省教育厅专项科研基金 (批准号:99JK0 91 )
西北大学科学基金(批准号 :99NW38)资助项目
关键词
非对称两态叠加
多模叠加态光场
任意奇数阶等阶N次方Y压缩
等阶N-Y最小测不准态
量子光学
Asymmetry superimposition state with distinguishable two quantum states
Multi-mode light field state of superimpositions state
Any odd number-order equal-order N-th power Y-squeezing
Equal-order N-th power Y-squeezing
Equal-order N-Y minimum un