摘要
研究脉冲时滞Logistic方程x′(t) =p(t) ( 1 -ex(t-τ) ) ,t≥ 0 ,t≠tk,x(t+ k) -x(tk) =bkx(tk) ,k∈N 的全局吸引性 ,获得了方程每一解N(t)趋于 0的充分条件 .
Considering the global attractivity of Logistic delay differential equation under impulsive perturbations x′(t)=p(t)(1-e x(t-τ) ),t≥0,t≠t k, x(t + k)-x(t k).=b kx(t k),k∈N.This paper intends to obtain some sufficient conditions that guarantee every solution of the equation to tent to zero.
出处
《甘肃教育学院学报(自然科学版)》
2002年第2期5-9,共5页
Journal of Gansu Education College(Natural Science Edition)