期刊文献+

基于神经网络的丙烯腈流化床反应器的模拟与离线优化 被引量:2

Simulation and Off-Line Optimization of an Acrylonitrile Fluidized Bed Reactor Based on Artificial Neural Networks
下载PDF
导出
摘要 利用人工神经网络的方法建立了工业合成丙烯腈流化床反应器的数学模型。采用遗传算法与梯度下降法相结合的方法训练神经网络的权值和阀值。经过训练和可靠性检验的人工神经网络能够满足工业生产的模拟要求。利用单纯型算法与遗传算法相结合的优化方法对合成丙烯腈工业流化床反应器进行了操作条件优化 。 In this paper,a mathematical model is developed for an industrial acrylonitrile fluidized bed reactor based on artificial neural networks.In order to overcome a local optimal solution,a new algorithm,which combines the perfect characters of both GA(Genetic Algorithms)and GDR(Generalized Delta-Rule) is used to train ANN(Artificial Neural Networks).For the purpose of gaining the global optimal solution,a new algorithm called SM-GA,incorporating the advantages of both SM(Simplex Method) and GA,is proposed and applied to optimize the operating conditions of an acrylonitrile fluidized bed reactor in industry.\;This off-line simulation and optimization of an acrylonitrile fluidized bed reactor makes good bases for the real-time optimization control.
出处 《化学工业与工程》 CAS 2002年第2期172-178,共7页 Chemical Industry and Engineering
关键词 模拟 离线优化 神经网络 遗传算法 单纯型法 流化床反应器 丙烯腈 simulation and optimization artificial neural networks genetic algorithms simplex method fluid bed reactor acrylonitrile
  • 相关文献

参考文献5

二级参考文献8

共引文献38

同被引文献13

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部