期刊文献+

金属塑性成形有限元仿真中的网格质量优化 被引量:4

Mesh optimization in FEM stimulation to metal plastic forming
下载PDF
导出
摘要 网格质量在很大程度上影响着金属塑性成形有限元数值分析的准确性和分析过程的可持续性。基于新的网格单元畸变度量体系 ,文中设计了一种新的关于节点位移的无约束最优化的目标函数 ,该函数有效客观地反映了有限元计算网格的畸变程度 ,且通过求偏导数 (等于 0 ) ,可以得到问题求解的显式表达式。因此 ,算法具有设计合理、实现简便、保持拓扑性等特点。此外 ,该算法可用于包括二维和三维情形的几乎所有形状的网格 。 The singularity of FE mesh influences greatly the accuracy of result in FEM simulation to metal plastic forming.A new objective function for FE mesh optimization is guided from distortional potential in the paper.The objective function is reasonable to measure the element's distortion and through setting its partial derivative vanishing,one can obtain the explicit formulation to solve the problem.So the algorithm has the advantage of time\|consuming and effectiveness.Moreover,it can be used to optimize any kind of mesh including the triangle,tetragon (2\|D),tetrahegon and hexa\|face (3\|D),etc.
出处 《塑性工程学报》 CAS CSCD 2002年第1期10-13,共4页 Journal of Plasticity Engineering
基金 航天工业总公司九五预研项目 (18 10 96 0 810 0 1)
关键词 网格质量优化 节点领域 畸变能 金属塑性成形 有限元仿真 mesh optimization neighbor domain of node potential of distortion
  • 相关文献

参考文献4

  • 1[1]Cannann S A,Stephenson M B,Blacker T.Optismoothing:An optimization-driven approach t mesh smoothing.Finite Elements in Analysis and Design,1993,13:185~190
  • 2[2]Parthasarathy V N,Kodiyalam S. A constrained optimization approach to finite element mesh smoothing.Finite Elements in Analysis and Design,1992,9:309~320
  • 3[3]Kennon Stephen R,George D S.Generation of computational grids using optimization.AAIA J,1986,24(7):1069~1073
  • 4[4]Carcaillet Richard,Kennon Stephen R,George D S.Optimization of three-dimensional computational grids.J.Air-craft,1986,23:415~421

同被引文献26

  • 1王群,李爱平,马淑梅.局部网格狭长三角形的品质改善及实现[J].同济大学学报(自然科学版),2004,32(11):1508-1511. 被引量:12
  • 2柯映林,周儒荣.实现3D离散点优化三角划分的三维算法[J].计算机辅助设计与图形学学报,1994,6(4):241-248. 被引量:27
  • 3苏从勇,庄越挺,黄丽,吴飞.基于正交图像生成人脸模型的合成分析方法[J].浙江大学学报(工学版),2005,39(2):175-179. 被引量:11
  • 4MENGXian-hai,YANGQin,LIJl-gang,CHENQi-ming.Improving the Quality of Conforming Triangular Meshes by Topological Clean up and DSI[J].Computer Aided Drafting,Design and Manufacturing,2004,14(2):47-56. 被引量:1
  • 5左旭.集成于CAD系统的汽车零件多工位三维体积成形CAE仿真.上海交通大学博士学位论文[M].,1998..
  • 6张向.金属体积成形过程有限元模拟中的六面体网格生成技术.上海交通大学博士学位论文[M].,2000,6..
  • 7Ruppert J. A Delaunay refinement algorithm for quality 2-dimensional mesh generation [J]. Journal of Algorithm, 1995, 18(3): 458 585.
  • 8Jonathan Richard Shewchuk. A condition guaranteeing the existence of higher-dimensional constrained Delaunay triangulations [C]//Proceedings of the Fourth Annual Symposium on Computational Geometry, 1998 26-85.
  • 9Rivara MC, Hitschfeld N, Simpson B. Terminal-edges Delaunay (small-angle based) algorithm for the quality triangulation problem [J]. Computer Aided Design, 2001, 33(2): 263-277.
  • 10Leif Kobbelt, Swen Campagna, Jens Vorsatz, et al. Interactive multi-resolution modeling on arbitrary meshes[C]//Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH. Orlando, 1998: 105-114.

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部