摘要
在重复数据的情况下,我们给出了非齐次点过程强度函数的核估计.并研究了该估计的均方差与积分均方差的渐进性质.对于核估计的窗宽选择,我们给出了两种不同的方法,并用模拟的方法比较了这两种方法的效率.
A kernel-type nonparametric estimator of the intensity function for inhomogeneous spatial point patterns with replicated data is proposed. Asymptotic expansion of the mean square error is derived and the rate of convergence of the integrated square error is also investigated. Two methods, least-square and composite likelihood cross-validation, for selecting the bandwidth are described. The performance of the two procedures are illustrated using simulation data.
作者
赵进
周秀轻
ZHAO Jin;ZHOU Xiuqing(Department of Mathematics,Nanjing University,Nanjing,210093,China;School of Mathematical Sciences,Nanjing Normal University,Nanjing,210023,China)
出处
《应用概率统计》
CSCD
北大核心
2018年第5期450-462,共13页
Chinese Journal of Applied Probability and Statistics
基金
supported by the National Natural Science Foundation of China(Grant No.11201235)
关键词
核估计
强度函数
重复空间点过程
渐进性质
复合似然
kernel estimator
intensity function
replicated spatial point patterns
asymptotic properties
composite likelihood